Creating and Integrating A
Linux Batch Processing Farm

Agenda

Describe the Problem We Solved

Outline the Solution We Used

Show How the Solution Was Implemented
Demonstration Output

Q&A

Problem Statement

* |In a lot of cases, traditional VM and z/0S
workload can be augmented by Linux-based
utilities
— Examples: zipping up files for transfer, PDF

conversion, etc.
— These operations are often too CPU-expensive to
perform on standard engines

* How can we set up a method for users to queue
workload to a set of Linux images so that we
distribute the workload fairly and consistently
across the provided images?

Our Approach

* We wanted a batch queuing system that could
take requests from multiple sources and assign
them to a pool of virtual machines.

e Solution would need to:
— Accept jobs from multiple sources

— Allow managing a queue of jobs and pools of
resources

— Allocate jobs to execution queues

— Return results to the submitter and notify them that
the jobs were completed.

Our Solution

* Locate a pre-existing job queuing system that
runs on Linux

— We chose NQS because it was most similar to the way
jobs and queues are managed in the mainframe world

— Originally developed by Sterling Software, and widely
used in the supercomputing community to get the
most out of machines like Crays and Connection
Machines.

— Written in fairly portable C and shell scripts

— Source code available to allow porting to System z
without major fuss

Demonstration Job Flow

Job submission
Job routing

Job execution

Output return
Connection to NJE

Our Configuration

e O
e T The
ssssss ~r e

The Master Cinpar(

status

Where:

e Jobs are submitted
e No user jobs run

o Completion info is recorded

Jobs remain in the queue on Master until a Worker is available.

Jobs are forwarded to workers using a round robin scheduler. A scheduler
based on resource usage is also available.

Jobs are transferred to the Worker and the Master no longer knows anything
about the jobs.

As jobs end, a small status job is submitted to run on Master which records
completion result and run times. These are recorded in a database for
later analysis.

The Workers

Where:
Worker 1 Worker 2
« User jobs execute (input() { input
« Status reported to Master | |
exec exec
status()| { status

In our configuration, the Worker input queues accept only one job at a time
from Master and passes newly accepted jobs on to the exec queue.

Job output (stdout and stderr) is queued locally and returned to Master
when job ends. This can be overridden if immediate output is required on
Master.

In our configuration, job status is provided by the job itself. However, NQS
provides user modifiable scripts to handle generic tasks like this.

Master

Master Input -Cinpur

gmgr create pipe_queue input

gmgr set Ib_out input

gmgr set dest=input@workerl input
gmgr set dest=input@worker2 input

Accepts user submitted jobs.
Prioritizes queued jobs.
Schedules jobs on available destination queues.

Jobs are submitted to the Master input queue via:
gsub -g input <script name | stdin>

Plethora of gsub options to control job processing.

Worker Input

Worker 1 Worker 2

gmgr create pipe_queue input input ~ L input
gmegr set Ib_in input
gmgr set dest=exec input

Accepts work from the Master input queue.

Blocks new jobs from Master if the local exec queue is busy.
Schedules jobs on local exec queue.

Jobs can be load balanced on multiple local batch queues if desired.

Jobs can come from multiple Master servers.

Worker Exec

Worker 1 Worker 2

gmgr create batch_gqueue exec

megr set pipeonly exec
amg PIp Y exec exec

Accepts work from the local input queue only.
Only runs 1 job at a time.

The exec queue can be customized via shell scripts to capture job start and
stop times, completion status, job triggering, etc.

By default, jobs are scripts and are executed as if they were run directly from
the command line.

Worker Status

Worker 1 Worker 2

gmgr create pipe_queue status
gmgr set dest=status@master status

status - { status

Accepts work from the local Worker exec queue.
Forwards status jobs to Master status queue.

Is not load balanced like the Master input queue.
Is only used to send status jobs back to master.

Status jobs can originate from batch jobs or from the customized exec queue.

Master Status et

l status

gmgr create batch_queue status
gmgr set pipeonly status
gmgr set run_limit=32 status

Accepts work from the remote Worker status queues.
Can run multiple jobs at once.

Nothing actually makes it a “job status” queue.

Q&A

