Perf-Method-06.PRZ

The Swami's Performance Methodology Ideas

Dan Janda The Swami of VSAM

The Swami of VSE/VSAM 04/09/06-10:10 PM

Dan Janda

VSE, VSAM and CICS

Performance Consultant

RR 2 Box 49E Hamlin Road Montrose, PA 18801-9624

(570) 934-2862 theswami@epix.net http://business.epix.net/~theswami World Alliance of VM,VSE and Linux Chattanooga, Tennessee April 2006

> Copyright 2005 by Dan Janda The Swami of VSE/VSAM

1

5 The Jargon of VSAM, File Systems and Performance

- The topic of <u>performance</u> can mean many things to many people
 - <u>Speed</u> -- how fast is the CPU -- often referred to as MIPS
 - MIPS -- "Meaningless Indicator of Processor Speed" unless the architecture and workload used for measurement are defined
 - Power -- how much work can be done by this CPU in a unit of time
 - If the CPU has more engines, its throughput capacity will be higher than a CPU with fewer engines of the same speed
 - <u>Throughput</u> -- number of jobs, transactions, or other units of work per unit of time
 - This is often not repeatable on a detail level because of random variation of workload factors
 - An approximation: Engine Speed x Number of Engines = Power
 - As you add engines, the effective speed of each engine is less

The Jargon of VSAM, File Systems and Performance

The topic of <u>performance</u> can mean many things to many people...

• Time terms:

- <u>Elapsed Time</u> -- the difference in "wall clock" times between start and end of a process, job, transaction, or other <u>unit of work</u> -- also <u>Response Time</u>
 - The sum of the Elapsed Times of a group of concurrent jobs exceeds the elapsed time of the group
- <u>CPU Time</u> -- the amount of time the CPU was busy actively processing a unit of work -in VSE, measured by a system facility called the CPU Timer
 - On multi-processor CPUs, the amount of CPU time available per unit of time is equal to the number of engines times the unit of time.
 - ► On a 3-engine CPU, 180 seconds of CPU time is available each minute
- <u>Wait Time</u> -- the amount of time the CPU was not busy actively processing a unit of work
 - ► Total wait time for a job may exceed the elapsed time
- <u>Overhead Time</u> -- Time the CPU was busy but its activity was not directly attributable to one or another unit of work
 - ► Paging, initial I/O interrupt handling, ...

The Jargon of VSAM, File Systems and Performance

- The topic of performance can mean many things to many people...
 - Input and Output (I/O) performance terms...
 - ◆ **I/O rate** -- number of I/O operations per unit of time
 - The following items account for the elapsed time of a single I/O operation on a DASD (or disk device) -- I/O Response Time
 - I/O queueing time -- time spent by a process waiting its turn to use an I/O device -- queueing within the operating system, generally
 - Pend time -- queueing time within the I/O subsystem
 - Seek time -- time during which a disk device arm is in motion
 - Rotational Delay time -- time during which a disk rotates to the position where the desired data is to be found
 - Transfer time -- time during which data is moved from I/O device to CPU storage
 - In addition, CPU time is used during I/O activity to prepare channel programs, translate them to reflect real storage addresses, and then to process the interrupt indicating the completion of the I/O operation

- What is performance?
- How can you define performance?
- How does your boss (or your boss's boss) define performance?
- How can you measure performance?
- Let's understand some of the pro's and con's of various alternatives...

Performance Basics

- Performance Views
 - Overall System View -- throughput perspective
 - Jobs per hour, shift, day
 - Average utilization
 - I/O rate
 - • •
 - Subsystem View -- throughput or speed perspective
 - Transactions per second
 - I/O rate per device
 - • •
 - Job step (or transaction) view -- speed or throughput perspective
 - Elapsed (or response) time
 - I/Os (overall or by device)
 - CPU time, wait time

. . .

Performance Basics

All CPUs wait at the same speed

- It does not matter to the critical job why it is waiting
 - It could be waiting because another job (of higher priority) is running
 - It could be waiting because it has requested an I/O operation
 - In fact, the CPU could be executing instructions on behalf of the critical job which could have been avoided by:
 - Better program design
 - Better program coding (or optimization)
 - and the processing required by the critical job is not being done
 - I/O operations (and the CPU time to manage them) that could be avoided

Performance Basics

All CPUs wait at the same speed

- They Wait for work
 - The CPU may be idle
 - The CPU may be processing lower priority work
- They Wait for I/O
 - During I/O operations
 - The CPU may be processing lower priority work
- In each of these cases, the processor is not processing <u>this</u> job
- Our role as performance people is to
 - Reduce the amount of this wait
 - Reduce the amount of CPU resource used to accomplish a task
 - Free system resources for use by other tasks

Performance Basics

All CPUs wait at the same speed

- All I/O operations require CPU time for their management
 - Depends on type of I/O, environment

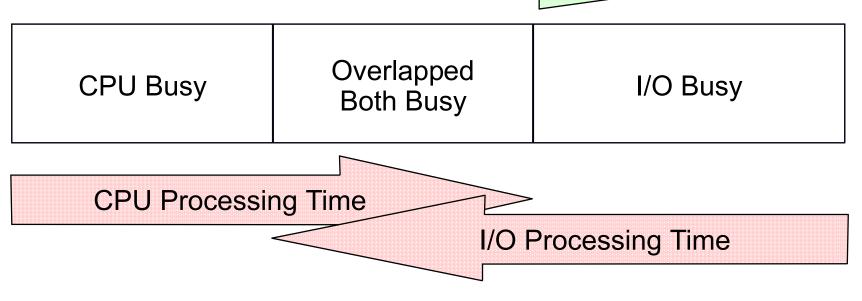
Type of Operation	Native VSE	Typical VM/VSE	Optimum VM/VSE
Tape, Real Printer	1.0-2.0K	2.0-4.0K	1.5-3.0K
CKD DASD	10-20K	20-40K	15-30K
ECKD DASD	8-16K	16-32K	12-24K

1000 long DASD I/Os / second could be 40 Mips
The Swami's educated estimates -- your mileage will vary

- CPU Dispatching Priority vs. Job Priority vs. Job Importance
 - Job Importance...
 - Printing paychecks is more important than playing solitaire
 - Job Priority...
 - POWER job scheduling priority controls sequence jobs start within POWER's work classes
 - CPU Dispatching Priority...
 - The order in which the operating system dispatcher will search for work to be done among those tasks "ready to run"
- VSE permits dispatcher priority to be dynamically changed (balanced) among workloads based on their CPU usage during a measurement interval
 - The VSE balancing measurement interval is set by the IPL MSECS parameter
 - The system default (about 1 second) seems reasonable in most cases.
 - Try smaller value for >100 Mips processors and short job steps

The Swami of VSE/VSAM

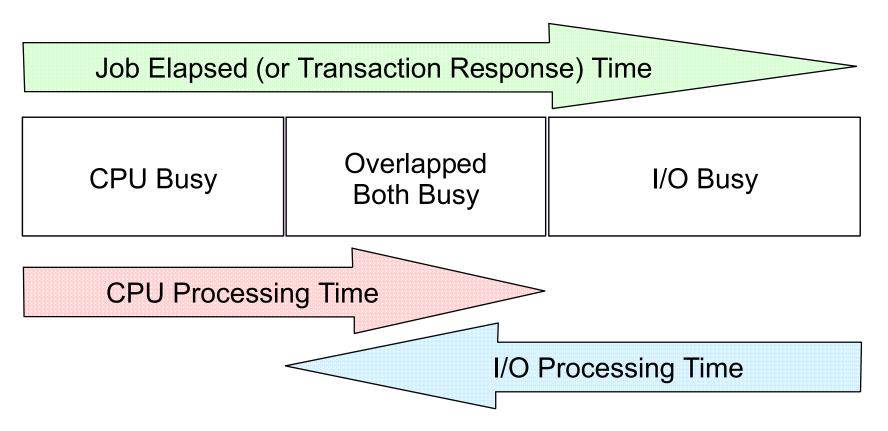
11


- A CPU can only be in one of two states:
 - Running
 - Waiting, divided into
 - Waiting for work -- there is nothing for it to do -- it is idle
 - Waiting for I/O -- one or more I/O activities have been started, but no work can continue until one of them completes
- A job can only be in one of four states:
 - CPU Running with no I/O operations active for this job
 - CPU Running together with I/O operations for this job active
 - CPU Waiting while I/O operations for this job are active
 - Lower priority job(s) may be running on the CPU
 - CPU Waiting with no I/O operations for this job active
 - Higher priority job(s) are running on the CPU
 - Wait for operator, scheduling holds, etc.
 - These may be (indirectly) other jobs' I/O causing the delay Dan Janda

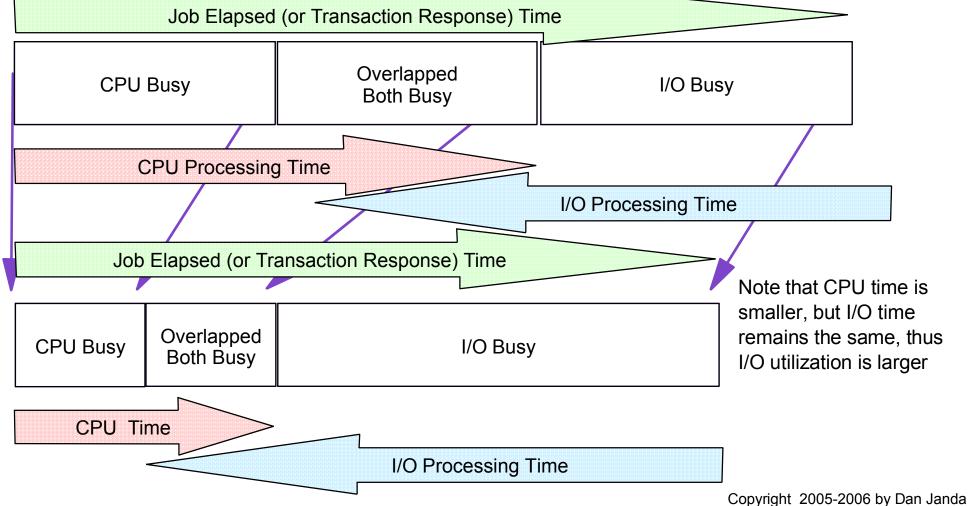
Performance Basics

- A simple job example shows some basic concepts:
 - Job reads records from file
 - Job computes result using data from those records

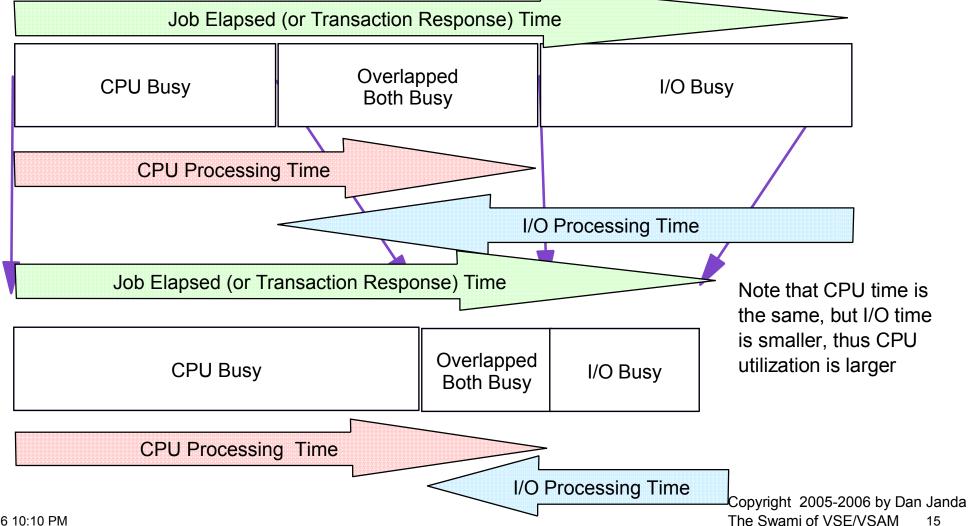
Job Elapsed (or Transaction Response) Time


This description of a workload is called its "profile"

Performance Basics


System changes' effects can be seen:

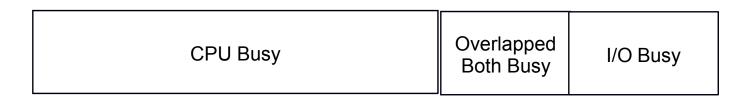
- CPU changes affect only CPU Busy and Both Busy segments
- I/O changes affect only I/O Busy and Both Busy segments


Double CPU Speed -- Same I/O Speed

The Swami of VSE/VSAM 14

Same CPU Speed -- Double I/O Speed

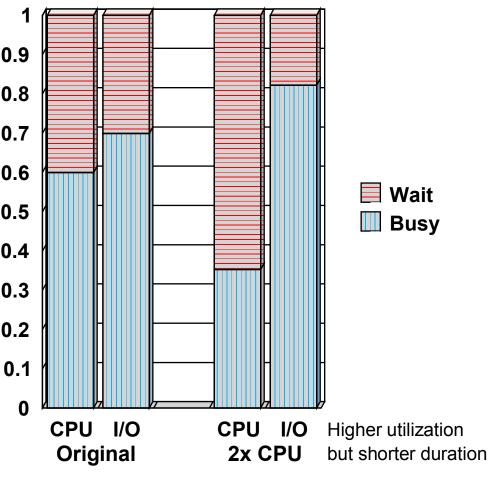
- This technique is called Profile Conversion...
 - A simple approach to predicting the effect of system changes on system performance
 - Rigorous mathematical basis, but only simple math is needed to use the process
 - Gathering data for profile conversion is not trivial
 - Tools to measure Elapsed time and CPU time exist
 - Tools to measure I/O time and Overlapped time do not exist (as far as I know -- but see next page)
 - IBM's VSE/PT produced data for this purpose, but it is no longer available nor operational
 - Reasonable estimates can be made in many cases



- Profile Conversion...
 - Gathering data for profile conversion is not trivial
 - Reasonable estimates can be made in some cases
 - VSE's SIR command can be very useful

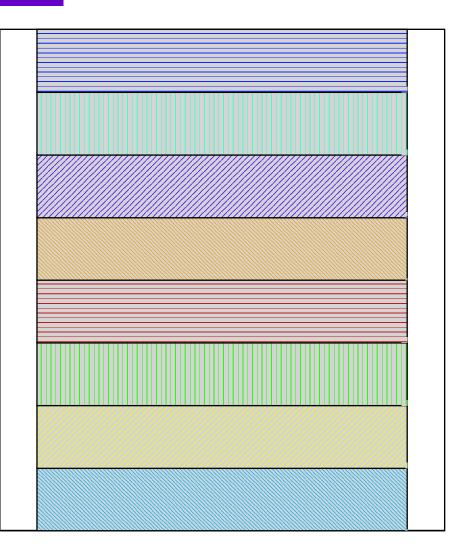
```
SIR
SIR ?
Displays SIR commands
SIR RESET
SIR SMF[={ON|OFF}][,VSE][,cuu]
Subsystem Measurement Facility
```


- Profile Conversion...
 - Reasonable estimates can be made in some cases
 - Job Accounting gives us CPU time accurately
 - Job Accounting gives us number of I/Os by device
 - EXPLORE, TMON, OMEGAMON can give us average I/O time for devices during the time in question
 - Total I/O time for a device is just product of the Number of I/Os and Average I/O Time for device
 - Sounds like something a spreadsheet could do!
 - Calculators, pencils, and similar tools can too!

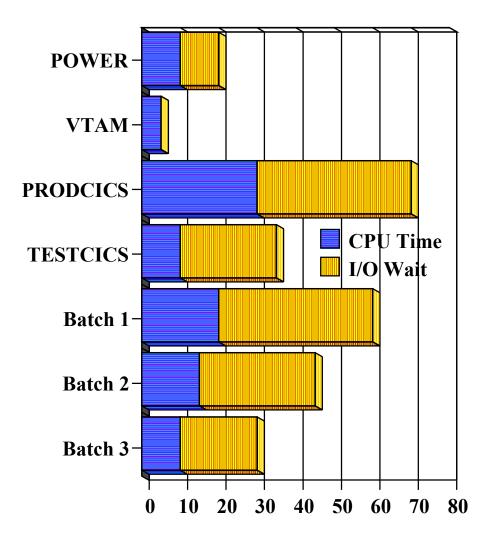

- Resource Utilization issues
 - Increase the speed of a component (CPU or some I/O device(s))
 - The system runs the workload faster (less elapsed time)
 - Wait on that component is now less
 - Utilization of other component(s) increases during the (now shorter) duration of the workload
 - Another component will immediately become the key bottleneck for that workload

Performance Basics

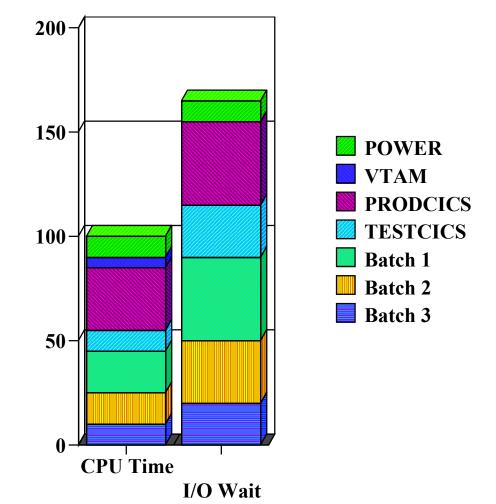
Resource Busy Time 120 0.9 100 0.8 0.7 80 0.6 I/O Busy **Both Busy** 0.5 60 **CPU Busy** 0.4 40 0.3 0.2 20 0.1 0 0 2x CPU CPU Original


Resource Utilization Percentage

Copyright 2005-2006 by Dan Janda The Swami of VSE/VSAM 20



- VSE uses a Preempt/Resume Priority Dispatch Algorithm
 - The highest priority task that is ready-to-run is dispatched
 - When that task must wait, the next highest priority job is dispatched
 - When any event completes, the dispatcher suspends the running task and re-evaluates the status of all tasks
 - If no task is ready-to-run, then CPU waits for work



- CPU is used by high priority task
- Lower priority tasks get what's left over
- If no CPU time is left, the lowest priority tasks get no CPU time
- Effective CPU Speed" is the fraction of the total CPU speed left after higher priority tasks have used what they will
 - In this case, Batch 3 "feels" a CPU only 1/10th of the full power
 - Tuning a higher priority task to reduce its I/O wait will reduce Effective CPU Speed for lower priority tasks

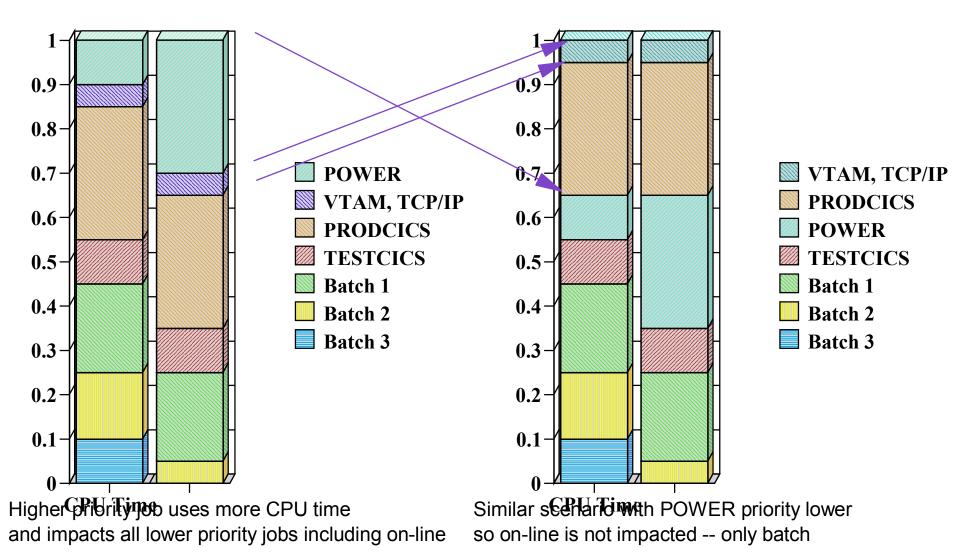
- CPU is used by high priority task
- Lower priority tasks get what's left over
- If no CPU time is left, the lowest priority tasks get no CPU time
- Effective CPU Speed" is the fraction of the total CPU speed left after higher priority tasks have used what they will
 - In this case, Batch 3 "feels" a CPU only 1/10th of the full power
 - Tuning a higher priority task to reduce its I/O wait will reduce
 Effective CPU Speed for lower priority tasks while the higher priority task is running

- CPU is used by high priority task
- Lower priority tasks get what's left over
- VSE/ESA's Turbo Dispatcher partition balancing
 - All partitions in a dynamic class are balanced
 - PRTY command can balance static partitions and partitions in dynamic classes
 - PRTY F1,F3,F2,G=F4=F5=BG indicates that dynamic partitions in class G and static partitions F4, F5, and BG form a balanced group
 - Only one balanced group can exist
 - PRTY SHARE,G=100,F4=200,F5=200,BG=50

Performance Basics

- CPU is used by high priority task
- Lower priority tasks get what's left over
- VSE/ESA's Turbo Dispatcher partition balancing
 - PRTY command can balance partitions and dynamic classes

PRTY SHARE,G=100,F4=200,F5=200,BG=50


- Each class G partition will receive an equal share, and the other partitions in the balanced group will receive an equal, greater, or lesser share based on the relative values specified
 - F4 and F5's shares are twice the share of the dynamic partitions
 - -BG's share is half the share of the dynamic partitions
- If a partition uses up its share of CPU resources, other partitions in the balanced group will be dispatched
- Partitions which have used their full share are eligible to use more resources if any are available after other partitions in the group have received their share or are waiting

- Some special cases:
 - POWER provides services primarily for batch
 - Batch jobs with large print components will cause POWER
 CPU utilization to increase
 - I call this "reflected batch work"
 - But much of it is processed at POWER's priority rather than the batch priority
 - This can impact VTAM, CICS, and data base services
 - VTAM provides services for CICS, POWER, and TCP/IP...
 - Its CPU use is generally charged to the using partition
 - It is difficult to see VTAM's CPU consumption directly
 - In test environments with scripted workloads, repeatable tests can be done and are the basis of VTAM tuning advice

Performance Basics

Copyright 2005-2006 by Dan Janda The Swami of VSE/VSAM 27

Performance -- not quite basics

- So, what can we do about it?
 - Measure
 - Data
 - Elapsed time, CPU time, I/O time; I/O counts
 - Performance Monitors
 - Explore, TMON, others
 - Job Accounting
 - CA-JARS, others
 - SJOBACCT, POWER accounting routines
 - Other sources -- Turbo Dispatcher
 - QUERY TD[,INTERNAL]
 - Dependent upon control of workload
 - SYSDEF TD, RESETCNT
 - VM, hardware data

Performance -- not quite basics

- Some real-world considerations for measurements
 - Multiprogramming effects
 - Impact of other workloads
 - Repeatability -- key factor
 - CPU time
 - Repeatable
 - I/O counts
 - Repeatable
 - Elapsed time
 - -Not repeatable
 - I/O time
 - -Not repeatable

Performance -- not quite basies

- SKJOBACC routine in ICCF Library 59
 - Captures VSE Job Accounting data at step end
 - Elapsed time
 - CPU time
 - Overhead time
 - I/O counts by device
 - Display results as a printed page on SYSLST
 - You have source code, so you can modify if desired
 - Simplest:
 - Output on another virtual printer
 - More complex:
 - Output on console
 - Change format, etc...
 - Selective output
 - -(e.g. only for jobs named "TUNE....")

Performance -- not quite basics

- SKJOBACC Metrics
 - Elapsed time
 - Interesting, but not useful unless complete workload is repeatable
 - CPU time
 - Very useful, repeatable, and can compare tuning and environmental changes with good precision
 - Overhead time
 - CPU time not identifiable for a specific task, apportioned among all active tasks on a pro-rata basis
 - I/O counts by device
 - Specific activity by job step to each device used
 - Others: Paging, POWER functions...

Performance -- not quite basies

- What can I do with this (SKJOBACC or similar) data?
 - I can tune a job step to
 - improve its performance
 - minimize its impact on other concurrent jobs
 - I can make tuning decisions for this job step
 - based on solid evidence
 - even when other jobs are running concurrently.

Method	Elapsed Time microseconds	CPU Time microseconds
COBOL Working Storage	1	1
CICS Data Table	10	10
VSAM LSR hit	25	25
VSE Virtual Disk	100	100
VM Virtual Disk	250	250
Well-cached real disk	1000	800
Un-cached disk	20000	

The Swami of VSE/VSAM 33

04/09/06 10:10 PM

Contacting the Presenter

- For more information...
 - You can contact the Swami by e-mail

theswami@epix.net

• He's building a web site about VSE/VSAM issues

http://business.epix.net/~theswami

- Downloadable ".PDF" files of the handout for this presentation can be found by following the links on that web page.
- His knowledge and experience can help you, too!