
The Long Life of COBOL and the
Mainframe.

John Rankin
June 20th – 22nd, 2024

VM Workshop 2024
Richmond, Virginia

Overview
• Early History of the Industry
• Development of COBOL
• Adoption of COBOL as a strategy by IBM
• Hardware enhancements focused on COBOL

IBM and the Seven Dwarfs
• IBM – IBM 704

üBurroughs – Datatron 205
üUNIVAC (Sperry Rand) – UNIVAC I and II
üNCR – NCR 304
üControl Data Corporation – CDC 1604
üHoneywell – DATAmatic 1000
ü General Electric – GE 200, GE 400, GE 600 (sold to Honeywell)
ü RCA – Spectra 70 (sold to UNIVAC)

The state of programming in
1954

• Almost all programming was done in Assembler or Machine Code
• Hand coding was part of the art of programming
• Compilers were about to become a thing
• IBM’s John Backus begins to develop FORTRAN for the 704

ü Backus sees programing as algebraic
• UNIVAC’s Grace Hopper begins to develop FLOW-MATIC

ü Hopper sees programming as English like
• Burroughs’ Mary Hawes is working as a senior product planner

ü Hawes helped develop B-0 which became FLOW-MATIC

FORTRAN I
• John Backus requests permission from IBM (Cuthbert Hurd) in late

1953
• Development team is assembled in early 1954
• The first manual is produced October 15, 1956
• The objectives:

ü Produce object code that functions as efficiently as hand coding.
ü Compile a program without using too many resources
ü Improve the speed of the programming process
ü Make the IBM 704 more desirable
ü Very little concern was put into the language design

• The first release April 8, 1957

FORTRAN I, a tower of Babel
• John Backus only planned his compiler for the IBM 704
• Every computer manufacturer produced versions of FORTRAN
• FORTRAN I was incomplete in several major areas:

ü Each manufacturer created incompatible extensions
ü A program written in FORTRAN needed to be rewritten on new

machines
• The reasons for diversity:

ü Too little work was put into the language design
ü Had been built only for IBM, so other companies needed changes
ü The documentation allowed early competition

• Dozens of incompatible FORTRAN compilers were produced

A meeting at the Pentagon
• In May of 1959, a meeting was held at the Pentagon
• A number of computer manufacturers and industry leaders
• Setup the Conference on Data Systems Languages
• Purpose:

ü Create a Common Business Oriented Language (COBOL)
ü Truly portable from different machines
ü To resolve the government problem of massive diversity in computing

• Thoughts of the members:
ü Hopper, Only direction from the government could allow all these

companies to work together without creating a restraint of trade issue
ü Hawes, Real business management needed to be clear and understood

First Report
• April 1960 the first CODASYL report on COBOL
• Short Range Committee

ü Air Materiel Command, U.S. Air Force
ü Bureau of Standards, Department of Commerce
ü Computer Science Corporation
ü Datamatic Division, Minneapolis – Honeywell Corporation
ü David Taylor Model Basin, Bureau of Ships, U.S. Navy
ü ElectroData Division, Burroughs Corporation
ü International Business Machines Corporation
ü Radio Corporation of America
ü Remington-Rand Division of Sperry-Rand, Inc.
ü Sylvania Electric Products, Inc.

Members of the Short-Range
Committee in 1959

Competitions for COBOL firsts
• The First Compiler

ü RCA on an RCA 501, August 17, 1960
• The First successful cross platform compilation

ü RCA and UNIVAC, December 6-7, 1960
• The proof is in the success

COBOL immerges as a success
• Portability between machines
• Clear, understandable language
• Easy to teach
• Designed for Business
• Quickly adopted by all manufacturers except IBM
• SHARE and GUIDE take up the challenge to convince IBM
• Eleven Software Companies announce COBOL compilers
• IBM offers compilers for 7070, 7080, 709/90, and the 705, but refuses

to specify any dates for delivery

The IBM Response to COBOL
• It’s clear the FORTRAN isn’t well suited for business
• IBM plans on a product called the Commercial Translator
• It comes up in the early 60s
• GUIDE indicates that they want Commercial Translator to include

support for COBOL
• IBM indicates that they are not compatible and Commercial Translator

will be released alone
• Still no indication of a date for COBOL

The IBM Long-term Response
• IBM sees Commercial Translator, as an alternative to COBOL
• IBM designs PL/I as their version of a business language

ü PL/I takes the innovative data area from COBOL and the formula from
FORTRAN, to create a mammoth language

ü It takes too long to develop, not released until 1966
ü The documentation is so large that it is called “The Vienna Phone

Directory”
ü No standard committee adopts it
ü No other manufacturer produces a version

• PL/I is still a language used today, but it was never the success IBM
intended

IBM gets the message
• IBM withdraws Commercial Translator from market

ü It produces poor code
ü An extremely weak alternative to COBOL

• IBM provides a COBOL Compilers for the 705 and 7090
• They are secretly planning the IBM/360 for 1964-1965
• SHARE and GUIDE

ü Indicate that if IBM wants users to buy their new IBM/360, it needs:
§ Robust support for COBOL programs
§ Embrace COBOL or the users will move to other vendors
§ Execute the object code produced by COBOL efficiently

The introduction of the 360
• Announced April 7th, 1964
• IBM receives strong opposition from the dwarfs:

ü Burroughs 5500
ü CDC 3600, 3300, and 3200
ü Honeywell 625, 635, and 1800
ü RCA 3301
ü Univac 1108

• IBM’s 360 has a strong structural support for COBOL, but is slower

The competition of machines in
1965 and 1966

• IBM makes several introductions to build competition for the dwarfs
• s/360 Model 44, August 1965

ü Specifically for scientific operations. Reduced Instructions
ü Extremely fast for the 60s

• s/360 Model 67, August 1965
ü Designed for COBOL
ü Decimal instructions are highly efficient, and much faster

• Only IBM has built a machine designed to run COBOL
• s/360 Model 91, January 1966

ü High speed for scientific
ü Sadly decimal instructions are missing and depends upon program chk

IBM Sets the long-term strategy
• Announces s/360 Model 85
• Much faster than any other machine on the market
• Designed specifically for COBOL operations
• Leaves the dwarfs in the dust
• Fully embraces the 1968 COBOL Standard produced by CODASYL
• IBM realizes that the users want COBOL, and if their machines fully

embrace COBOL, they will win

IBM in 1970s through 1990s
• COBOL becomes a stronger and stronger part of the world
• $2 trillion dollars is the total investment in COBOL systems
• 5 billion lines of new COBOL are developed every year
• 90% of global financial transactions are processed in COBOL.
• 75% of all daily business transactions are processed in COBOL
• 70% of mission-critical applications are in COBOL
• The language supports over 30 billion transactions per day.
• There are 1.5-2 million developers, globally, working with COBOL

code.
• 15% of all new application functionality will be written in COBOL
• 800 billion lines of COBOL software are in use today

The COBOL Language
• COBOL is extremely scalable.
• COBOL can support large volumes of transactional data.
• COBOL is extremely reliable for mission-critical applications,

particularly when run on mainframes.
• COBOL is an easy-to-learn language that adapts well to business

needs.
• COBOL is extremely portable across platforms.

COBOL Standards
• CODASYL Report on COBOL, April 1960
• CODASYL Extended COBOL Specifications, November 1962
• CODASYL COBOL, July 1969, Adopted by ANSI and ISO
• ANSI X3.23-1974, American National Standard COBOL, May 1974
• ANSI X3.23-1985, American National Standard COBOL, Sept. 1985
• ISO/IEC 1989, International Standard COBOL, June 2014
• ISO/IEC 1989, International Standard COBOL, January 2023
• Over 65 years of stable design

IBM Mainframe meets Physics
• As IBM enters the twenty first century
• The machines can’t get much smaller to include more circuits
• IBM meets the challenge with creative and innovative design

ü Parallel activity
ü Extreme Cashing
ü Path prediction
ü Moving more and more of the operation onto the chip

• Highly memory oriented programs suffer
• IBM once again sees COBOL as an important Partner

Twenty Years of IBM Mainframe
Development

• z900/z800 – December 2000 (Architecture 5)
• z990/z890 – June 2003 (Architecture 6)
• z9ec/z9bc – September 2005 (Architecture 7)
• z10ec/z10bc – February 2008 (Architecture 8)
• z196/z114 – August 2010 (Architecture 9)
• zEC12/zBC12 – September 2012 (Architecture 10)
• z13/z13s – March 2015 (Architecture 11)
• z14/z14R1 – August 2017 (Architecture 12)
• z15-T01/z15-T02 – September 2019 (Architecture 13)
• z16-A01/z16-A02 – May 2022 (Architecture 14)

z/900, z/990
(Arch 5 and 6)

• 64bit Architecture
ü 16 64bit registers
ü Full support for 24/31/64 addressability
ü Below the line
ü Above the bar (64bit Virtual Memory Objects)

• Relative Displacement Instructions
ü Branching without base registers
ü Distance is 2 billion half words forward or backward from location

• Long Displacement Instructions
ü Normal displacement is 4096 bytes off of a base register
ü Long displacement is 1 megabyte off of a base register

z/9, z/10
(Arch 7 and 8)

• Relative Displacement Instructions
ü Allows for completely relocatable code
ü Necessary for successful Linux implementation

§ Linux unable to utilize virtual storage
§ Only one large address space for the entire Linux

ü Baseless operation
• Immediate Literal Instructions

ü One, two, and four byte literals are part of the instruction
ü Moves operations onto the chip and avoids accessing memory
ü Loading 256 bytes of instructions into in Line Buffer

z196, zEC12, z13
(Arch 9, 10, and 11)

• Decimal Floating Point Instructions
ü 16 128 bit Floating Point Registers
ü 31 BCD Digits plus a sign

• Full set of Decimal Instructions
• IBM’s first attempt to provide instructions for Cobol
• Reduces dependency on memory to memory operation
• Implementation of VECTOR facility

ü 32 128 bit Instructions
ü Integer
ü Floating
ü String

z14, z15, z16
(Arch 12, 13, and 14)

• Vector Facility Upgrades
• 32 128bit Registers and four areas of instruction:

ü Integer
ü Floating Point
ü String
ü Binary Coded Decimal – Implemented in the z14

• Extremely high speed operation
ü Up to 1, 2, 4, 8, or 16 elements operating simultaneously
ü Operation completely in processor unit

• The Vector Binary Coded Decimal Facility
ü Completely designed for the use with Cobol
ü 31 Digits of BCD per vector register

z16 adds New Value
• 7nm Telum Processor Unit
• 256KB L1 per PU Core
• 32MB L2 Semi-private per PU Core
• Completely new design in improved performance
• Speed improvement is dependent:

ü Operation close to the Core
ü Registers, and inline operation processing within Core

• Performance Issues since z13:
ü SIIS Storage into instruction stream
ü Heavy Memory Operations, such as BCD operations in Cobol

• Solution is the Vector Facility

The State of Cobol VSE/ESA
• Hardware Support

ü ESA instructions, limited in their ability to use current facilities
ü Heavily designed towards memory to memory operation

• Software Support
ü Old design for code base

§ Built upon 1968 code structure
§ Limited ability to react to hardware changes
§ Designed for a stable architecture
§ Discarded and rewritten for Enterprise Cobol

ü Use of runtime and assembler objects
§ Internal routines are used from the 1968 version of Cobol
§ LE used for runtime, limits performance in exchange for support

z/Cobol™ for VSE
• z/Cobol™ for VSE is designed for all modern IBM Mainframes

ü 100% Compatible for IBM Cobol VSE/ESA 1.1, 21csw 1.2
ü Meets the National Institute of Standards and Technology

§ 100% Certified against ANSI 1985 Cobol Standard
§ 340,000 Lines of Cobol, Testing Code Suite with 500+ programs tests

ü Maximum Performance on all IBM z Series mainframe platforms
• Completely New
• Generates High Performance Code
• Built for z/VSE and VSEn

Compiler Operation
• Cobol Source code can be structured to match:

ü ANSI 1968, ANSI 1974, ANSI 1985, or ISO/IEC 1989:2014(E)
ü Enhancements specifically designed for VSE

§ TCP/IP for ANSI Communication Description Entries
§ Report Description Entries, Compliant with ANSI 1974 and ANSI 1985
§ Addition VSE based file methods, and all IBM extensions

• Generated Object code:
ü Linked with provided library of non LE routines.
ü No LE environment required.
ü Object code can be executed anywhere in VSE

• Supports fully functional export of assembler code as output

Code Generated
• 100% 64 bit.

ü Dynamically adjusts to the calling environment, and uses IBM z/OS save
area structures

• Reentrant, no SIIS issues
• Optimized for non memory to memory operation
• Takes full advantage of Long Displacements and Relative Branching

ü Each storage section can be addressed 1 Megabyte at a time
ü Branching works with full word relative movements

• All supporting routines
ü Provided in linkable 64bit object decks
ü Designed to work with 24/31/64 objects where necessary

• Runtime error recovery, including vector displays

Intellectual Property
z/Cobol™ for VSE

• U.S. Patents:
ü 10,901,739 Issued: January 26th, 2021
ü 11,429,390 Issued: August 20th, 2022

• COBOL Standards
ü CODASYL COBOL – Issued: July, 1968
ü X3.23-1974 ANSI COBOL, Issued: May 10th, 1974
ü X3.23-1985 ANSI COBOL, Issued: September 10th, 1985
ü ISO/IEC 1989/Amendment 1, Intrinsic function module

Embracing the Power of the
Hardware

• Levels of Support
ü Basic z/Series support, Architecture level 5

§ 64 instructions, relative branching, and long displacements
ü Immediate Values, Architecture level 7

§ Reduces the use of literal pools, and moves literals into instructions
ü Decimal Floating Point, Architecture level 9

§ Moves binary coded decimal away from memory to memory operations
ü Vector Facility, Architecture 12

§ Uses all 32 Vector Registers
§ Completely eliminates binary coded decimal memory instructions
§ All math operations occur on the chip, storing only when necessary

Vector Code Generated
• As math operations occur when z/Cobol™ elements are loaded into

Vectors
• All 32 Vectors are continually used
• Vectors are saved prior to call operations

ü Allows z/Cobol™ code to use vectors while in CICS
ü Interfaces with standard callable routines

• Perform Verb operations
ü Utilizes Vectors for comparisons, and increments
ü Operates with as much data loaded into Vectors

• High performance operation
• Maintaining maximum instructions and data on chip and not memory

Performance Improvements
• Machine Support

ü z Series - Support for 64bit register usage
ü z10 - Decimal Floating Point
ü EC12 and BC12 - Decimal Floating Point Zone Extension
ü z13 and z13s - 32 Vector Registers and Instructions
ü z14 and z14 ZR1 - Vector Packed Decimal Facility
ü z15 and z15 T02 - Enhanced Vector Facility
ü z16 - Advanced Vector Facility Packed Decimal

• Structural Support
ü Highly optimized code generation
ü Use of registers, and vector registers, for intermediate results
ü Persistent and compressed code generation

Designing for COBOL
• After 60 Years, IBM keeps COBOL in the design of every new

machine
• This can be clearly illustrated with the new z series machines
• Let’s go through an example of:

ü The DIVIDE verb
ü Completely Supported by Vector Decimal Instructions

IBM Hardware is Designed for
COBOL

• The lesson IBM Learned in the 50s and 60s, they follow today
• The user community needs and wants COBOL
• COBOL is designed by the industry and not IBM
• The Hardware is successful when it supports IBM
• Every new release of hardware comes with a new release of

Enterprise COBOL from IBM
• No programming language has been designed that is as Common, or

as Business Oriented.

Thank You

