
Github Action Runners

Neale Ferguson
2024-06-20

2

Agenda

• What are Github Actions
• What are Action Runners
• Why would you care
• Types:

– Self-hosted
– Marketplace

• Using Action Runners
• References
• Building and using your own Runner

Github Actions

• A built-in CI/CD platform offered by
GitHub

• Allows you to automate various tasks
within your software development
workflow directly from your GitHub
repositories

3

Github Actions

• Workflow Automation:
– Define automated workflows using YAML

files within your repository.
– These workflows can be triggered by

various events, such as pushes to specific
branches, pull requests, or scheduled
intervals.

4

Github Actions

• Jobs and Steps:
– Break down your workflows into smaller,

manageable units called jobs.
– Each job can consist of multiple steps,

which define specific actions to be
executed.

5

Github Actions

• Actions:
– The building blocks of your workflows.
– They represent specific tasks you want to

perform, for example:
• Building your code
• Running tests
• Deploying your application
• Sending notifications.

6

Github Actions

• Marketplace
– A rich marketplace offers a vast collection

of pre-built actions for common tasks.
– You can also create your own custom

actions or reuse actions from other
developers.

7

Github Actions - Benefits

• Streamlined Development
– Automates repetitive tasks, freeing up

developer time for more creative work.
• Improved Quality

– Integrates testing and linting into your
workflow, ensuring code quality.

8

Github Actions - Benefits

• Faster Releases
– Automates deployments, enabling faster

and more frequent releases.
• Collaboration

– Integrates with other tools and services
used in your development process.

9

Example Workflow

• This workflow gets triggered when
there's a push to the main branch and
performs the following actions:
– Checks out the code from the repository.
– Uses a pre-built action to build the code.
– Runs another action to execute unit tests.
– If all tests pass, deploys the application to a

staging server.

10

11

name: CI
on:
 push:
 branches: [main]
jobs:
 build-and-test:
 runs-on: ubuntu-latest # Workflow will run on Ubuntu Linux
 steps:
 - uses: actions/checkout@v3 # Checks out the code from the repo
 - name: Build the code
 run: ./build.sh # Replace this with your specific build command
 - name: Run unit tests
 run: ./test.sh # Replace this with your unit test command
 - name: Deploy to staging (if tests pass)
 if: success() # Runthis step if all previous steps succeed
 run: ./deploy-to-staging.sh # Replace with your deployment cmd

Github Action Example Explained

• name: Name of the workflow, which is
displayed in the GitHub Actions UI for
better organization

• on: Defines the event that triggers the
workflow. In this case, the workflow runs
when there's a push to the main branch

12

Github Action Example Explained

• jobs: Defines the jobs within the
workflow. Here, we have one job named
build-and-test

• runs-on: Specifies the runner operating
system where the job will execute. Here,
we're using an Ubuntu runner.

13

Github Action Example Explained

• steps: This defines the individual steps
within the job. Each step executes a
specific command:
– uses the actions/checkout@v3 action to

check out the code from the repository
– builds the code using a custom command

(./build.sh)
– runs unit tests using a custom command

(./test.sh)
14

Github Action Example Explained

• steps: This defines the individual steps
within the job
– conditionally deploys the application to a

staging server using a custom command
(./deploy-to-staging.sh)

• The if: success() condition ensures this step only
runs if all previous steps succeed.

15

Action Runners

• GitHub Actions runners are the
machines that execute the jobs defined
in your GitHub Actions workflows:
– GitHub-hosted runners

• VMs provided by GitHub itself. They come with
pre-installed tools and environments
commonly used in development workflows.

• VMs provided by marketplace: coming soon to
IBM Cloud for z and Power

16

Action Runners

– Self-hosted runners:
• Machines you set up and manage yourself. This

gives you more control over the hardware,
software, and security of your workflow
execution.

17

Github-Hosted Action Runners

• Advantages:
– Easy to use: No setup or maintenance

required: you just define your workflow.
– Scalability: GitHub automatically scales the

runners based on demand.
– Free for basic use: Limited free minutes are

included in your GitHub account.

18

Github-Hosted Action Runners

• Considerations:
– Limited control: You don't have control

over the hardware or software
configuration of the runners.

– Cost: Free minutes have limitations,
exceeding them incurs charges.

– Security: Public runners might not be
suitable for workflows handling sensitive
data.

19

Self-Hosted Motivation

• Flexibility & Control
– Hardware – you control the environment to

match specific requirements
– Software – you install the packages

required by the workflow
– Security: behind your own firewalls and

access controls

20

Self-Hosted Motivation

• Flexibility & Control
– Customization

• Specialized runners to fit specific needs
– Cost

• Heavy workloads that aren’t limited by hosted
usage settings

21

Self-Hosted Motivation

• Considerations:
– Maintenance: Requires setting up,

maintaining, and securing the runner
machines.

– Scalability: Scaling up or down runners
requires manual intervention.

22

Choosing Runner Type

• Dependent on Requirements:
– GitHub-hosted runners are a great option

for getting started or for workflows that
don't require specific configurations.

– Self-hosted runners are ideal for scenarios
where you need more control, have
specialized software requirements, or
handle sensitive data.

23

Github Action Runners Come to z

• Why now?
– The Github action runners are written for

.NET
– z and Power now have .NET

• Rest of Presentation addresses self-
hosted Action Runners

24

Self-Hosted Runner Types

• One-to-One
– An instance per github repo

25

CONTAINER ID IMAGE COMMAND STATUS NAMES
c6219e38da6c runner:test /bin/sh -c /opt/r... Up 17 minutes gallant_boyd

√ Connected to GitHub

Current runner version: '2.317.0'
2024-06-18 18:20:18Z: Listening for Jobs

Self-Hosted Runner Types

• One-to-Many
– An instance triggers a runner for any repo
– Docker + LXD Containers

26

CONTAINER ID IMAGE COMMAND NAMES
8a16f2b7adb3 rabbitmq:3.12 rabbitmq-server (healthy) actions-runner_rabbitmq_1
8f7fdf67f5e2 couchdb:3.3.2 /opt/couchdb/bin/... actions-runner_couchdb_1
5040e7390bcc gh-app:latest /gh-app actions-runner_gh-app_1
6bcc0de16409 listener:latest /listener actions-runner_listener_1
47b02d7ba170 lxd:latest /lxd actions-runner_lxd_1

+--------------------+--+------------+
| ALIAS | DESCRIPTION | SIZE |
+--------------------+--+------------+
| ubuntu-22.04-s390x | GitHub Actions ubuntu 22.04 Runner for s390x | 2494.32MiB |
+--------------------+--+------------+

Demo Time

• Live chicken has been obtained
• Incense has been burned
• Let’s go…

27

Self-Hosted Runner Configuration

• If we have time…

– https://youtu.be/SASoUr9X0QA

28

https://youtu.be/SASoUr9X0QA

References

• GitHub Actions - Self-hosted runners -
Installation & Calling -
https://youtu.be/SASoUr9X0QA

• GitHub Actions: Write your first
workflow with GitHub APIs -
https://youtu.be/-hVG9z0fCac

29

https://youtu.be/SASoUr9X0QA
https://youtu.be/-hVG9z0fCac

Building a Self-Hosted Runner

• Download patch

• Add following slides into Dockerfile
• Change the RUNNERPATCH argument or

use the --build-arg option to specify
the location of where you placed patch

• Build the container image

30

https://download.sinenomine.net/vmworkshop/runner-sdk-8.patch

docker build --tag runner:8 .

Building a Self-Hosted Runner

31

FROM almalinux:9

ARG RUNNERREPO="https://github.com/actions/runner" \
 RUNNERPATCH=runner-sdk-8.patch \
 SDK=8 ARCH=s390x

RUN dnf update -y -q && \
 dnf install -y -q wget git which langpacks-en glibc-all-langpacks sudo

RUN dnf install -y -q dotnet-sdk-${SDK}.0 && \
 echo "Using SDK - `dotnet --version`"

COPY ${RUNNERPATCH} /tmp/runner.patch

RUN cd /tmp && \
 git clone -q ${RUNNERREPO} && \
 cd runner && \
 git checkout $(git describe --tags $(git rev-list --tags --max-count=1)) -b build && \
 git apply /tmp/runner.patch

RUN cd /tmp/runner/src && \
 ./dev.sh layout && \
 ./dev.sh package && \
 ./dev.sh test && \
 rm -rf /root/.dotnet /root/.nuget

Building a Self-Hosted Runner

32

RUN useradd -c "Action Runner" -m almalinux && \
 usermod -L almalinux && \
 echo "almalinux ALL=(ALL) NOPASSWD: ALL" >/etc/sudoers.d/almalinux

RUN mkdir -p /opt/runner && \
 tar -xf /tmp/runner/_package/*.tar.gz -C /opt/runner && \
 chown -R almalinux:almalinux /opt/runner && \
 su -c "/opt/runner/config.sh --version" almalinux

RUN dnf install -y -q cmake make automake autoconf m4 gcc gcc-c++ libtool epel-release

RUN rm -rf /tmp/runner /var/cache/dnf/* /tmp/runner.patch && \
 dnf clean all

USER almalinux

EXPOSE 443

CMD /bin/bash

Running a Self-Hosted Runner

• Create an action runner instance from
this Dockerfile

• Use the TOKEN obtained from
configuring the target REPO on github

• Run the container

33

FROM localhost/runner:8
ARG REPO TOKEN
RUN /opt/runner/config.sh --url ${REPO} --token ${TOKEN}
CMD /opt/runner/run.sh

docker build --tag <instance-name>:runner --squash \
 --build-arg REPO=<repo> TOKEN=<token> .

docker run <instance-name>:runner

Running a Self-Hosted Runner

• Run the container and check its logs

34

> podman run –d <instancename>:runner
> podman logs <name of container>

√ Connected to GitHub

Current runner version: '2.317.0'
2024-06-20 16:54:19Z: Listening for Jobs

