

# FBA, CKD, FCP, FICON, NVMe

What are they? What are the differences? Is one better than the other?

John Wolfgang Tom Corrado 20 June 2024





# Agenda

- Disk Formats
  - CKD
  - FBA
- Interface Types
  - SCSI
  - NVMe

Data Transmission ProtocolsFICON

• FCP

- Compare and Contrast
  - Cost
  - Performance
  - Configuration Differences
  - Advanced Capabilities
  - Replication Considerations

#### Caveats

- Block Storage-Centric
- Storage System Dependent
- High-level Overview
- General Concepts
- No Step-by-Step or specific commands

Does any of this warrant detailed analysis?



#### **Disk Formats**

CKD & FBA



#### **Disk Format: CKD**

- CKD (Count Key Data)
- Variable-length architecturesector size is defined within the "count" area of each data record
- Required for IBM mainframes
- Introduced by IBM in 1964 with System/360
- CKD also refers to mainframe channel commands for using CKD-format devices

IBM Count Key Data (CKD) Track Format



#### Notes:

- 1. All early CKD track formats used error detection code for Count field.
- 2. Not present in early CKD track formats.
- 3. Key and Data fields used error detection codes prior to 3380/3330

Derived from US Patent 5,535,372



#### **Disk Format: FBA**

- FBA (Fixed Block Architecture)
- Each addressable sector is the same size
- Term coined by IBM in 1979 after moving away from its variable-length mainframe architecture
- Available on mainframe storage devices as the "open systems" option
- Disk model on which SCSI is predicated





# Interface Type

SCSI and NVMe



#### Interface: SCSI

- SCSI (Small Computer System Interface)
- Set of standards for physically connecting and transferring data between devices
- Best known for its use with hard drives
- Introduced in 1980s and continually updated





#### Interface: NVMe

- NVMe (Non-Volatile Memory Express)
- Allows host hardware/software to capitalize on the low latency and internal parallelism of solid-state storage devices
- Used for accessing NAND Flash memory
- Architecture physically contained within the storage media, updated by updating storage media
- No processor overhead
- Open-source interface specification





## **NVMe vs SCSI**

SCSI was designed for slower hard disk drives (HDDs) and tape drives

NVMe was developed for use with memorybased technology and flash storage

- NVMe has a streamlined register interface and command set
- NVMe reduces CPU overhead
- NVMe lowers latency and improves performance

| Features           | Legacy Interface | NVMe  |  |
|--------------------|------------------|-------|--|
| Max Command Queues | 1                | 65536 |  |
| Max Queue Depth    | 32               | 65536 |  |

#### Internal Flash Storage "NVMe"

- Z Systems mainframes can have internal storage directly on the PCIe bus
- Sometimes referred to as "NVMe"
- Not to be confused with standard NVMe protocol

The term "NVMe" as used in this presentation refers to the standard NVMe protocol and not the internal flash storage





#### **Data Transmission Protocols**

FICON, FCP, NVMe over FC



#### **Protocol: FICON**

- FICON (Fiber Connection)
- Allows for use of IBM's channel-tocontrol-unit connection with existing fiber channel infrastructure
- Required for native mainframe-tostorage connections
- Introduced in 1998, replaced bus and tag/ESCON in 2013
- Data rates up to 64Gbps at distances up to 10 km





#### **Protocol: FCP**

- FCP (Fibre Channel Protocol)
- SCSI interface protocol using a fibre channel connection
- High-speed data transfer mechanism for connecting hosts, storage devices, displays and more
- One standard for networking, storage, and data transfer
- Used to connect mainframe host/storage to "open systems"
- Data rates up to 64 Gbps at distances up to 10km



## **Protocol: NVMe over FC**

- Allows for the performance benefits of NVMe between devices via fiber channel
- Provides interface-level performance at the network layer, similar to how FCP = SCSI over fiber
- Simplifies the NVMe command sets into basic FC protocol instructions
- Extremely low latency, higher performance, scalability, and parallel I/O in transferring data using the NVMe command set

NVMe over Fibre Channel can coexist on your FC SAN along with your existing FCP or FICON traffic

## Putting it All Together

- FBA LUNs are accessed via FCP or NVMe
- CKD volumes are accessed via FICON





#### **Compare & Contrast**



#### **Example Storage Systems**





#### **CKD & FBA Hybrid Storage Systems**

Dell PowerMax 2500 & 8500 Hitachi Vantara VSP 5000 series IBM DS8900F family



#### **FBA-Only Storage Systems**

Dell PowerVault & PowerStore series Hitachi Vantara VSP One & VSP E-series IBM FlashSystem series PURE FlashArray series Many other options



## **Compare & Contrast: Cost**

Costs vary drastically and are very specific to configuration In General:

- Systems that provide CKD will be more expensive
  - Highest-end enterprise systems that provide the most performance, reliability, flexibility, and features
  - Environmental costs are typically higher as well
  - If a user wants/needs CKD, this is the only option
  - These systems can do both CKD/FBA, so you can consolidate
- Users opt for the FBA-only systems whenever possible for a lower price point

If you need CKD anyway, no price advantage If you can use an FBA-only system, FBA will be less expensive



#### **Compare & Contrast: Performance**





## **High Performance FICON (zHPF)**

- zHPF is an extension to the FICON architecture designed to improve the execution of small block I/O requests.
- zHPF streamlines the FICON architecture
- Improves the way channel programs are written and processed to reduce channel overhead
- Sends multiple channel commands as a single entity instead of multiple separate commands
- Increases the number of active open exchanges

#### Link Protocol Comparison for a 4KB READ



IBM z16<sup>™</sup> FICON Express32S Performance

May 2023

In effect, zHPF is FICON acting more like FCP to achieve more FCP-like performance



#### **zHPF: Drastic Improvement**



IBM z16<sup>™</sup> FICON Express32S Performance May 2023

#### **Parallel Access Volumes**

- Accessing a CKD volume via FICON is a single I/O operation at-a-time experience
  - Causes queuing delays
- PAVs enable a single server to process multiple I/O operations to the same logical volume simultaneously
- Aliases are created and temporarily assigned to the base volume that is being accessed
- Static, Dynamic, Hyper, Super
- FBA volumes use queues (QDIO devices) so they don't have this same issue

Combine zHPF & HyperPAVs/SuperPAVs to get the most "FCP-like" performance



# **Compare & Contrast**

Configuration Differences



#### Data Access Control Multiple Image Facility (MIF)

- FICON relies on MIF to manage shared channels & devices
  - Provides ultra-high access control and security of data
  - Ensures one OS image and its data requests cannot interfere with another
- MIF also allows FCP channels to be shared between Linux Logical Partitions and z/VM Logical Partitions with Linux guests
- FCP does not exploit the data access control and security functions of MIF resulting in the following limitations:
  - OS images share a WWPN and are indistinguishable from each other within the fabric
  - LUN access is first come, first served



#### Data Access Control Node Port ID Virtualization

- Allows for a single FCP channel to be presented as multiple channels from multiple operating systems
- Each OS sharing an FCP channel receives a unique WWPN (Worldwide Port Name) which it uses on the SAN
- FCP traffic can therefore be isolated by WWPN despite using the same physical port
- WWPN can be used for:
  - Device-level access control in storage controllers (LUN masking)
  - Switch-level access control (zoning)
- Requires a switch that supports NPIV





#### Data Access Control Switch Topology

- FICON SAN topology is limited to a two Director, single hop configuration
- FCP channels support full fabric connectivity, meaning that several directors/switches can be used between a System Z system and the device



#### **HCD/IOCP Differences**

FICON definitions require Control Unit layout to be defined in OS Configuration section of HCD

• Base & alias volumes

FICON addressing uses CHPID, Director Port, and Control Unit Address

For FCP, only the channel type and QDIO data devices are defined in the HCD/IOCP

FCP devices are addressed using the World Wide Names (WWNs) and Logical Unit Numbers (LUNs)

• Configured in the OS - NOT HCD/IOCP



IBM z16<sup>™</sup> FICON Express32S Performance May 2023



# **Compare & Contrast**

Advanced Capabilities



## **Multipathing Differences**

CKD multipathing is handled invisibly by the operating system

- z/OS is presented a single device
- Multipathing happens under channel subsystem control

FCP multipathing is managed at the Linux system level

- Each path to a LUN appears to the OS as a separate device
- Four paths to a LUN means Linux sees four SCSI devices.
- Multi-pathing implementation varies with the Linux distribution





## Single System Image

- Multiple systems can be clustered together to appear as a single system
- Enables multiple z/VM systems to share and coordinate resources within a Single System Image structure
- Ability to relocate Linux LPARs seamlessly
- zLinux SSI enables Live Guest Relocation (LGR)

Requires z/VM running on CKD volumes (Guests can be on FBA)



# **Compare & Contrast: Replication**

- Replication Overview
- High-Availability

• Replication Management Software



#### **Replication Overview**

- No Differences in Basic Replication Capabilities
  - Synchronous, Asynchronous, Point-in-time all available for both
- FBA provides larger volume capability in some storage systems
  - IBM DS8900F Replication Max: 4 TiB FBA vs. 1 TiB CKD
  - IBM FlashSystems provide much larger FBA capacity LUNs
  - Of course, there may be OS restrictions on usable LUN sizes





# **Compare & Contrast: Replication**

- Replication Overview
- High-Availability

Replication Management Software





#### Dell

Dell AutoSwap

#### IBM

IBM HyperSwap IBM FlashSystem HyperSwap





#### Hitachi Vantara

IBM CSM Basic HyperSwap IBM GDPS HyperSwap

# High-Availabilit

**35** © Converge Technology Solutions

## **Dell AutoSwap**

- Swaps workload from one set of volumes to another set in / different storage systems with no interruption of operations
- Uses standard z/OS services
- Used for both planned and unplanned swaps

#### Dell AutoSwap is CKD ONLY





## IBM FlashSystem HyperSwap

- Provides dual-site access to a volume FBA ONLY
- HyperSwap volumes have a copy at one site and a copy at another site. Data that is written to the volume is automatically sent to both copies.
- If one site is no longer available, the other site can provide access to the volume.
- The system automatically provisions change volumes to provide consistency protection.
- The synchronization process is managed automatically by the system.



## IBM System z HyperSwap

Runs on the IBM DS8000 storage family

Switches all UCBs of the primary volume to point to the secondary volume and redirects all I/O transparently to running applications

Requires synchronized Metro Mirror replication relationships between the volumes being swapped

Used for both planned and unplanned swaps

IBM System z HyperSwap can operate on both CKD & FBA depending on Management Software



# **Compare & Contrast: Replication**

- Replication Overview
- High-Availability

- Replication Management Software
  - Dell GDDR
  - IBM GDPS
  - IBM CSM



#### **Dell Geographically Dispersed Disaster Restart (GDDR)**

- GDDR automates business recovery following both planned outages and disaster situations, including the total loss of a data center
- Provides monitoring, automation, and quality controls to many Dell and third-party hardware and software products required for business restart
- Supports an intermix of CKD and FBA volumes
- Does NOT support automated AutoSwap of FBA volumes
- During an AutoSwap, the source FBA disks are made "Not Ready" which causes application timeouts on the attached servers.
- Installed on z/OS





#### IBM Geographically Dispersed Parallel Sysplex (GDPS)

- Family of software products for disaster recovery and resiliency
- Manages storage replication across heterogenous platforms
- Automates IBM Parallel Sysplex operational tasks & Performs Failure Recovery
- Supports replication management of both ECKD and FBA volumes
- Provides Data consistency across the IBM Z and distributed applications including HyperSwap via xDR managed FBA disk
- Has extended support for the new Single System Image (SSI) 8-way cluster capability
- GDPS Metro Linux<sup>®</sup> in LPAR mode provides support for running Linux natively in an LPAR on IBM Z<sup>®</sup> hardware
- Supports Hitachi Vantara systems for HyperSwap
- Installed on z/OS



## IBM Copy Services Manager (CSM)

- IBM CSM controls Copy Services in heterogeneous storage environments
- Can be installed on open systems servers, DS8900F HMCs, or z/OS
- Manages replication of both CKD & FBA volumes
- Can manage CKD volumes via FICON connectivity
- When installed on z/OS or can communicate with z/OS IOS component
- Via the z/OS connectivity, can manage HyperSwap of z/OS CKD volumes only
  - Basic HyperSwap or full HyperSwap capability
  - Supports Hitachi Vantara systems for HyperSwap

| View/Modify              | StartGC H1->H2               | . ( |        |   |        |
|--------------------------|------------------------------|-----|--------|---|--------|
| Export<br>Remove Session | HyperSwap ilback     Suspend | · ( |        |   |        |
| HyperSwap                | Stop                         |     | Site 1 | 1 | Site 2 |
| Copy Sets                | <sup>1</sup> Terminate       |     |        |   |        |
| z/OS Association         | CEBCPLEX (sysplex)           |     |        |   |        |

## Summary

- Disk Formats
  - CKD
  - FBA
- Interface Types
  - SCSI
  - NVMe

Data Transmission Protocols
FICON

• FCP

- Compare and Contrast
  - Cost
  - Performance
  - Configuration Differences
  - Advanced Capabilities
  - Replication Considerations
    - Replication Overview
    - High-Availability
    - Replication Management Software





# Thank you

john.wolfgang@convergetp.com tom.corrado@convergetp.com





#### References

- IBM z16<sup>™</sup> FICON Express32S Performance, May 2023
- Dr. Steve Guendert , Brocade Communications, Understanding NPIV and the Performance of Channels with zLinux, SHARE Boston 2013
- John Crossno, Understanding the Benefits of SCSI for Linux on z Systems, SHARE Orlando 2015
- IBM System z Connectivity Handbook, 2013



45

