IBM 2

Rexx Language Coding Techniques
Part 1

Tracy Dean
IBM Product Manager, z/VM Tools and IMS Tools

June 2023

81K
II| [
pll
] !
||||||||
=]

> Part 1
- Rexx products
- External environments and interfaces
- Instructions, functions, and subroutines
- Variable visibility
- Parsing

» Additional material included in hand-out, not covered Iin session

Rexx Language Coding Techniques © 2014, 2023 IBM Corporation

IBM Z g

Rexx Interpreter and Libraries

>
>

A procedural language
Indicator to operating system that it's Rexx - contains:

The Interpreter executes (interprets) Rexx code “line by line”
Included in all z/OS and z/VM releases

A Rexx library is required to execute compiled programs
Compiled Rexx is an LE language

Two Rexx library choices:
(Runtime) Library — a IBM product

- Alternate library — a IBM download

Uses the native system’s Rexx

At execution, compiled Rexx will use whichever library is
available

Rexx Language Coding Techniques © 2014, 2023 IBM Corporation

The Rexx Products

» IBM Compiler for Rexx on zSeries Release 4
z/VM, z/OS: product number 5695-013
> IBM Library for Rexx on zSeries Release 4
z/VM, z/OS: product number 5695-014
> zIVSE
Part of operating system
> IBM Alternate Library for Rexx on zSeries Release 4

Included in z/OS base operating system

Free download for z/VM (and z/OS)
http://www.ibm.com/software/awdtools/rexx/rexxzseries/altlibrary.html

» Rexx Interpreter
Included in all z/OS and z/VM releases

Rexx Language Coding Techniques © 2014, 2023 IBM Corporation

Why Use a Rexx Compiler?

» Program performance
Known value propagation
Assign constants at compile time
Common sub-expression elimination
stem.i processing
» Source code protection
- Source code not in deliverables
» Improved productivity and quality

- Syntax checks all code statements

Trace S provides limited syntax checking
Flags missing END statements
Does not catch syntax errors in If Then statements regarding value comparisons

- Source and cross reference listings
» Compiler control directives
- %include, %page, %copyright, %stub, %sysdate, %systime, %testhalt

Rexx Language Coding Techniques © 2014, 2023 IBM Corporation

Rexx External Environments

<

External Environments

» ADDRESS instruction is used to define the external
environment to receive host commands

- For example, to set TSO/E as the environment to receive
commands

» Several host command environments available in z/OS
» A few host command environments available in z/VM

Rexx Language Coding Techniques © 2014, 2023 IBM Corporation

Host Command Environments in z/OS

- TSO
Used to run TSO/E commands like ALLOCATE and TRANSMIT

Only available to Rexx running in a TSO/E address space
The default environment in a TSO/E address space

Example:

- MVS
Use to run a subset of TSO/E commands like EXECIO
The default environment in a non-TSO/E address space

Example:

- Many more

Rexx Language Coding Techniques © 2014, 2023 IBM Corporation

Other z/OS Host Command Environments

ISPF services

ISPF edit macros

CONSOLE

LINK, LINKMVS, LINKPGM, ATTACH, ATTCHMVS, ATTCHPGM
SYSCALL

SDSF

DSNREXX

Rexx Language Coding Techniques © 2014, 2023 IBM Corporation

IBM Z

Host Command Environments in z/VM

» CMS (default)

Commands treated as if entered on the CMS command line
Translation of parameter list

search order as

» COMMAND

Basic CMS CMSCALL command resolution
No translation of parameter list

To call an EXEC, with the word EXEC
To send a command to CP, use the prefix CP

» CPICOMM, CPIRR, OPENVM

» Generally, best practice is to use “Address Command” at the
top of Rexx EXECs that will be run in CMS environment

Rexx Language Coding Techniques © 2014, 2023 IBM Corporation

Multiple Methods to Specify External Environment

- Initial value, later changed:
MYTEST is another Rexx EXEC I'm calling from this program:

Run under
Address
Command

Run under
Address CMS

All future commands are treated as Address CMS unless specified
otherwise

Rexx Language Coding Techniques © 2014, 2023 IBM Corporation

Multiple Methods to Specify External Environment

- |Initial value used as default

All calls requiring a different value have statement
MYTEST is another Rexx EXEC I'm calling from this program:

Run under
Address
Command

Run under
Address CMS

Rexx Language Coding Techniques © 2014, 2023 IBM Corporation

Instructions, Functions, and Subroutines

Instructions vs Functions vs Subroutines

> Keyword instruction
- One or more clauses
- First word is a keyword that identifies the instruction

> Instruction
- Statement that performs an assignment of a value to a variable

» Function

Must return a single result string (i.e. often on the)
Built-in - provided as part of the Rexx language

Internal - create your own within the same program

External — create your own outside this program

» Subroutine
- Called (similar to a function) but may not return data
- Returns data in special variable:

Rexx Language Coding Techniques © 2014, 2023 IBM Corporation

Functions

» Must return a single result string
- Often on the right side of an equal sign

» Built-in functions — too many to list, so a few examples
- Absolute value of a number Today’s date or day of the week

- 25 October 2021

- 3
- Left justify a string ~ Friday
> ‘Tracy Dean ‘ Find a string within another string
- Determine the type of data 25
-0

Rexx Language Coding Techniques © 2014, 2023 IBM Corporation

» Multi-step task to execute multiple times
- Write once, use multiple times
- Make code easier to read

» Call a subroutine, pass and return variables
m from Return
Instruction in

<+ special variable
called “Result”
> Define a subroutine

- After EXxit instruction of main program
- Start with name of subroutine followed by colon
- End with Return instruction

Rexx Language Coding Techniques © 2014, 2023 IBM Corporation

Declaration and Visibility of Variables

ol
‘
i
|
<

Variable Declaration

> Rexx is a procedural language

» Variables are not declared
- Initial value Is same as variable name in uppercase

- Seen as a string unless perform mathematical operation
Requires the value at the time be valid for the operation
Type of data assigned to a variable can change within a program
Valid:

Output:

Rexx Language Coding Techniques © 2014, 2023 IBM Corporation

Visibility of Variables

> Variables can be visible throughout a program

Visible within Functions and Subroutines you create within the
program

No need to pass, declare or expose them
Not visible in Procedures unless specifically exposed

> Programming practice

Functions, Subroutines, and Procedures use different variable
names for reusability

Pass the value of variables on the call

Function, Subroutine or Procedure will parse the value and assign
to its own variables

Pass values back to main program via Return statement

For subroutines and procedures, values are visible to calling routine via
Result variable

Rexx Language Coding Techniques © 2014, 2023 IBM Corporation

Visibility of Variables in Functions and Subroutines

« Using existing variables « Creating new variables
* In a function In a subroutine

More common to use
separate variables in the

function or subroutine

Rexx Language Coding Techniques © 2014, 2023 IBM Corporation

Visibility of Variables in Procedures

> No visibility of variables from main program unless

specifically requested —

Variable used for
something else in
the program

Value from Return
statement in
Procedure

Indicates no exposure of
variables from main program

Value of anything
here becomes
value of “Result”

variable

Does not
effect variable
of same name
In main
program

Rexx Language Coding Techniques © 2014, 2023 IBM Corporation

Visibility of Variables in Procedures

> No visibility of variables from main program unless
specifically requested

Variable used for

something else in
4 the program

This is your total due: 110.00
Principal & interest: PRINCIPAL INTEREST

Dod
effect

in main
program CalcTotalDue: Procedure
Parse Arg principal interest .

total = principal* (1 + interest)
Return total <«

Value of anything
here becomes
value of “Result”

variable

Rexx Language Coding Techniques © 2014, 2023 IBM Corporation

Visibility of Variables in Procedures

» Exposing variables from main program to a Procedure

Never set in main
program, only set
in Procedure

BEWARE:

Brings in value
Also : .
of this variable
changes .
i . from main
value in main
program
program

No need to
Return “total”
as “Result”

Rexx Language Coding Techniques © 2014, 2023 IBM Corporation

Visibility of Variables in Procedures

> Exposing variables from main program to a Procedure

Note never set in
loan = 100 main program,

nl in
- 0 n ‘ 0 yetl

Same output:
This is your total due: 110.00
Principal & interest: PRINCIPAL INTEREST

total = principal* (1 + interest)
Return

No need to
Return “total”
as ‘“result”

Rexx Language Coding Techniques © 2014, 2023 IBM Corporation

Returning Variables from Functions and Procedures

» Returning variables from a Procedure to the main program

All data from “Return”
statement is assigned
as a string to “Result”
variable

Can return any
expression (literals,
variables, etc.)

Rexx Language Coding Techniques © 2014, 2023 IBM Corporation

Returning Variables from Functions and Procedures

» Returning variables from a Procedure to the main program

Output:
Total due: 110.00

Rexx Language Coding Techniques © 2014, 2023 IBM Corporation

Calling a Subroutine vs External Routine

» From within a Rexx EXEC, call another Rexx EXEC

- As an external routine

Processed as a variable

unless in quotes. Be
aware of case sensitivity

- As a subroutine

Rexx Language Coding Techniques © 2014, 2023 IBM Corporation

Calling a Subroutine vs External Routine

« External calls « Subroutines

* Receive data * Receive data
« Parameters (aka arguments) « Parameters (aka arguments)
* On the stack * Visible variables

* Return data « On the stack
* In a return code (variable rc) « Return data in

« Must be a whole number * Result variable

* On the stack « Other visible variables

 On the stack

|

No variable visibility

Rexx Language Coding Techniques © 2014, 2023 IBM Corporation

Parsing

Keyword Instruction: Parse

> Parse
- Allows the use of a template to split a source string into multiple
components
. . ~PARSE——+-————— === AR G mmm e m e
Syntax. ” '+—T_TPPER—'+ :—EKTERI-IAL —————————————————— : ’
+-NIMERIC-——————m————————m—— +
+=FLL-—=—————mm—m———m +
+-S0URCE-———————————————— - +
+-VELUE—4-——=———————— +-WITH-+
['—expression-"' [
+-VAR--name------—-—-———-—-——--- +
' VERSION----————=—————————— '
e e et T <
'-template list-"
> to some of these instructions exist

- But you may see them in another user’s code you must maintain

- ARG
= Short form for

- PULL
= Short form for

Rexx Language Coding Techniques © 2014, 2023 IBM Corporation

Parse Templates

> Simple template

- Divides the source string into words and assigns them to the
variables named in the template

The last variable gets the rest of the string exactly as entered

Rexx Language Coding Techniques © 2014, 2023 IBM Corporation

Parse Templates — Blank Delimiter

» Simple template
A period (aka a dot) is a placeholder in a template

A “dummy” variable used to collect unwanted data
Notice the consecutive single quotes so the single quote is recognized as part of the string

Often used at the end of Parse statement to take “the rest of the data”

Causes the last variable to get the last word without leading and trailing blanks

Rexx Language Coding Techniques © 2014, 2023 IBM Corporation

Parse Templates — Literal or Variable Delimiter

> String pattern template

A indicating where the source string
should be split

Assumes blank-delimited if no other pattern specified

i Literal
Literal:
Variable: Blank

delimited

Qutcome (the same in both cases):

Rexx Language Coding Techniques © 2014, 2023 IBM Corporation

Parse Templates — Positional Delimiter

» Positional pattern template

- Use numeric values to identify the at which to split data in the source
string

- An absolute positional pattern is a number or a number preceded by an equal sign

- Arelative positional pattern is a number preceded by a plus or minus sign
- Plus or minus indicates movement right or left, respectively, from the last match

Rexx Language Coding Techniques © 2014, 2023 IBM Corporation

Parse Templates . . .

» Positional pattern template — removing blanks

Specify an absolute positional pattern
Insert periods to strip blanks

If data starts in column 1 and is blank-delimited, this is the same as

Warning — won'’t work if any of the data has more than one “word”

Blank
delimited

Rexx Language Coding Techniques © 2014, 2023 IBM Corporation

> Part 1
- Rexx products
- External environments and interfaces
- Instructions, functions, and subroutines
- Variable visibility
- Parsing

» Additional material included in hand-out, not covered Iin session

Rexx Language Coding Techniques © 2014, 2023 IBM Corporation

Tracy Dean

Product Manager, z/VM Tools and IMS Tools
tldl@us.ibm.com

Rexx Language Coding Techniques © 2014, 2023 IBM Corporation

2.
wmre LU aweuc

Hindi

Traditional Chinese

Cnacunboo Ndzi khense ngopfu Gracias

Tsonga Spanish

[Hhak ot oprigas

Russian

Arabic :
Frazi
Grazie Danke
Ke a leboha 1/ ’ Merci
Tswana French

Simplified Chinese

h60T) BUBES CENELE ﬁllf)ﬂ@m

Tamil

Japanese Thai

Rexx Language Coding Techniques © 2014, 2023 IBM Corporation

	Slide 1
	Slide 3: Agenda
	Slide 5: Rexx Interpreter and Libraries
	Slide 6: The Rexx Products
	Slide 7: Why Use a Rexx Compiler?
	Slide 8
	Slide 9: External Environments
	Slide 10: Host Command Environments in z/OS
	Slide 11: Other z/OS Host Command Environments
	Slide 22: Host Command Environments in z/VM
	Slide 23: Multiple Methods to Specify External Environment
	Slide 24: Multiple Methods to Specify External Environment
	Slide 25
	Slide 26: Instructions vs Functions vs Subroutines
	Slide 27: Functions
	Slide 28: Subroutines
	Slide 29
	Slide 30: Variable Declaration
	Slide 31: Visibility of Variables
	Slide 32: Visibility of Variables in Functions and Subroutines
	Slide 33: Visibility of Variables in Procedures
	Slide 34: Visibility of Variables in Procedures
	Slide 35: Visibility of Variables in Procedures
	Slide 36: Visibility of Variables in Procedures
	Slide 37: Returning Variables from Functions and Procedures
	Slide 38: Returning Variables from Functions and Procedures
	Slide 39: Calling a Subroutine vs External Routine
	Slide 40: Calling a Subroutine vs External Routine
	Slide 41
	Slide 42: Keyword Instruction: Parse
	Slide 43: Parse Templates
	Slide 44: Parse Templates – Blank Delimiter
	Slide 45: Parse Templates – Literal or Variable Delimiter
	Slide 46: Parse Templates – Positional Delimiter
	Slide 47: Parse Templates . . .
	Slide 48: Summary
	Slide 49
	Slide 50

