
1 © 2014, 2023 IBM CorporationRexx Language Coding Techniques

IBM Z
IBM Z

Rexx Language Coding Techniques

Part 1

Tracy Dean

IBM Product Manager, z/VM Tools and IMS Tools

June 2023

3 © 2014, 2023 IBM CorporationRexx Language Coding Techniques

IBM Z

Agenda

➢ Part 1

• Rexx products

• External environments and interfaces

• Instructions, functions, and subroutines

• Variable visibility

• Parsing

➢ Part 2

• Rexx compound variables vs. data stack

• I/O

• Troubleshooting

• Programming style and techniques

• Other Rexx products and projects

➢ Additional material included in hand-out, not covered in session

5 © 2014, 2023 IBM CorporationRexx Language Coding Techniques

IBM Z

Rexx Interpreter and Libraries

➢ A procedural language

➢ Indicator to operating system that it’s Rexx - first line contains:

/* Comment (if any) */

➢ The Interpreter executes (interprets) Rexx code “line by line”

• Included in all z/OS and z/VM releases

➢ A Rexx library is required to execute compiled programs

• Compiled Rexx is not an LE language

➢ Two Rexx library choices:

• (Runtime) Library – a priced IBM product

• Alternate library – a free IBM download

• Uses the native system’s Rexx interpreter

➢ At execution, compiled Rexx will use whichever library is
available

6 © 2014, 2023 IBM CorporationRexx Language Coding Techniques

IBM Z

The Rexx Products

➢ IBM Compiler for Rexx on zSeries Release 4

• z/VM, z/OS: product number 5695-013

➢ IBM Library for Rexx on zSeries Release 4

• z/VM, z/OS: product number 5695-014

➢ z/VSE

• Part of operating system

➢ IBM Alternate Library for Rexx on zSeries Release 4

• Included in z/OS base operating system

• Free download for z/VM (and z/OS)

• http://www.ibm.com/software/awdtools/rexx/rexxzseries/altlibrary.html

➢ Rexx Interpreter

• Included in all z/OS and z/VM releases

7 © 2014, 2023 IBM CorporationRexx Language Coding Techniques

IBM Z

Why Use a Rexx Compiler?

➢ Program performance

• Known value propagation

• Assign constants at compile time

• Common sub-expression elimination

• stem.i processing

➢ Source code protection

• Source code not in deliverables

➢ Improved productivity and quality

• Syntax checks all code statements
• Trace S provides limited syntax checking

▪ Flags missing END statements
▪ Does not catch syntax errors in If Then statements regarding value comparisons

• Source and cross reference listings

➢ Compiler control directives

• %include, %page, %copyright, %stub, %sysdate, %systime, %testhalt

8 © 2014, 2023 IBM CorporationRexx Language Coding Techniques

IBM Z

Rexx External Environments

9 © 2014, 2023 IBM CorporationRexx Language Coding Techniques

IBM Z

External Environments

➢ ADDRESS instruction is used to define the external

environment to receive host commands

• For example, to set TSO/E as the environment to receive

commands

Address TSO

➢ Several host command environments available in z/OS

➢ A few host command environments available in z/VM

10 © 2014, 2023 IBM CorporationRexx Language Coding Techniques

IBM Z

Host Command Environments in z/OS

• TSO

• Used to run TSO/E commands like ALLOCATE and TRANSMIT

• Only available to Rexx running in a TSO/E address space

• The default environment in a TSO/E address space

• Example:
Address TSO “ALLOC FI(INDD) DA(‘USERID.SOURCE’) SHR”

• MVS

• Use to run a subset of TSO/E commands like EXECIO

• The default environment in a non-TSO/E address space

• Example:
Address MVS “EXECIO * DISKR MYINDD (FINIS STEM MYVAR”

• Many more

11 © 2014, 2023 IBM CorporationRexx Language Coding Techniques

IBM Z

Other z/OS Host Command Environments

• ISPF services

• ISPF edit macros

• CONSOLE

• LINK, LINKMVS, LINKPGM, ATTACH, ATTCHMVS, ATTCHPGM

• SYSCALL

• SDSF

• DSNREXX

22 © 2014, 2023 IBM CorporationRexx Language Coding Techniques

IBM Z

Host Command Environments in z/VM

➢ CMS (default)

• Commands treated as if entered on the CMS command line

• Translation of parameter list

▪ Uppercasing and tokenizing

• Same search order as CMS command line

➢ COMMAND

• Basic CMS CMSCALL command resolution

• No translation of parameter list

▪ No uppercasing of tokenized parameter lists

• To call an EXEC, prefix the command with the word EXEC

• To send a command to CP, use the prefix CP

➢ CPICOMM, CPIRR, OPENVM

➢ Generally, best practice is to use “Address Command” at the
top of Rexx EXECs that will be run in CMS environment

23 © 2014, 2023 IBM CorporationRexx Language Coding Techniques

IBM Z

Multiple Methods to Specify External Environment

• Initial value, later changed:

• MYTEST is another Rexx EXEC I’m calling from this program:

/* Sample Rexx program */

Address Command

…

“EXEC MYTEST”

…

Address CMS

…

“MYTEST”

• All future commands are treated as Address CMS unless specified

otherwise

Run under

Address

Command

Run under

Address CMS

24 © 2014, 2023 IBM CorporationRexx Language Coding Techniques

IBM Z

Multiple Methods to Specify External Environment

• Initial value used as default

• All calls requiring a different value have Address statement

• MYTEST is another Rexx EXEC I’m calling from this program:

/* Sample Rexx program */

Address Command

…

“EXEC MYTEST”

…

Address CMS “MYTEST”

…

“EXEC MYTEST”

Run under

Address

Command

Run under

Address CMS

25 © 2014, 2023 IBM CorporationRexx Language Coding Techniques

IBM Z

Instructions, Functions, and Subroutines

26 © 2014, 2023 IBM CorporationRexx Language Coding Techniques

IBM Z

Instructions vs Functions vs Subroutines

➢ Keyword instruction

• One or more clauses

• First word is a keyword that identifies the instruction
Arg, Do, If, Parse, …

➢ Instruction

• Statement that performs an assignment of a value to a variable
counter = 1

➢ Function

• Must return a single result string (i.e. often on the right side of equal sign)

• Built-in - provided as part of the Rexx language

• Internal - create your own within the same program

• External – create your own outside this program

➢ Subroutine

• Called (similar to a function) but may not return data

• Returns data in special variable: Result

27 © 2014, 2023 IBM CorporationRexx Language Coding Techniques

IBM Z

Functions

➢ Must return a single result string

• Often on the right side of an equal sign

➢ Built-in functions – too many to list, so a few examples

• Absolute value of a number
total = -3

newtotal = Abs(total)

→ 3

• Left justify a string
fullname = Left(‘Tracy Dean’,20)

→ ‘Tracy Dean ‘

• Determine the type of data
If Datatype(amtowed,’N’)=1

Then amtowed = amtowed * 1.1

Else Say ‘Amount owed is invalid’

• Today’s date or day of the week
today = Date()

→ 25 October 2021

todaydow = Date(‘W’)

→ Friday

• Find a string within another string
startcol = Pos(‘day’,’Tuesday’)

→ 5
startcol = Pos(‘x’,’Tuesday’)

→ 0

28 © 2014, 2023 IBM CorporationRexx Language Coding Techniques

IBM Z

Subroutines

➢ Multi-step task to execute multiple times

• Write once, use multiple times

• Make code easier to read

➢ Call a subroutine, pass and return variables
…

Call CalcInterest amountborrowed

amountdue = Result

…

➢ Define a subroutine

• After Exit instruction of main program

• Start with name of subroutine followed by colon

• End with Return instruction
CalcInterest:

Parse Arg principal

…

total = principal + (principal * rate)

Return total

Value from Return

instruction in

special variable

called “Result”

29 © 2014, 2023 IBM CorporationRexx Language Coding Techniques

IBM Z

Declaration and Visibility of Variables

30 © 2014, 2023 IBM CorporationRexx Language Coding Techniques

IBM Z

Variable Declaration

➢ Rexx is a procedural language

➢ Variables are not declared

• Initial value is same as variable name in uppercase

• Seen as a string unless perform mathematical operation

• Requires the value at the time be valid for the operation

• Type of data assigned to a variable can change within a program

• Valid:
total = ‘Here is some text’

Say ‘Here is the original total:’ total

total = 5+3

newtotal = 1.5 * total

Say ‘Here is the new total:’ newtotal

• Output:
Here is the original total: Here is some text

Here is the new total: 12.0

31 © 2014, 2023 IBM CorporationRexx Language Coding Techniques

IBM Z

Visibility of Variables

➢ Variables can be visible throughout a program

• Visible within Functions and Subroutines you create within the

program

• No need to pass, declare or expose them

• Not visible in Procedures unless specifically exposed

➢ Programming practice

• Functions, Subroutines, and Procedures use different variable

names for reusability

• Pass the value of variables on the call

• Function, Subroutine or Procedure will parse the value and assign

to its own variables

• Pass values back to main program via Return statement

• For subroutines and procedures, values are visible to calling routine via

Result variable

32 © 2014, 2023 IBM CorporationRexx Language Coding Techniques

IBM Z

Visibility of Variables in Functions and Subroutines

• Using existing variables
• In a function

principal = 100

interest = 0.10

totaldue = CalcTotalDue()

…

Exit

…

CalcTotalDue:

total = principal*(1 + interest)

Return total

• Creating new variables
• In a subroutine

loan = 100

rate = 0.10

Call CalcTotalDue(loan rate)

totaldue = Result

…

Exit

…

CalcTotalDue:

Parse Arg principal interest .

total = principal*(1 + interest)

Return total

More common to use
separate variables in the
function or subroutine

Both are valid for
functions and
subroutines

33 © 2014, 2023 IBM CorporationRexx Language Coding Techniques

IBM Z

total = 855

…

loan = 100

rate = 0.10

Call CalcTotalDue(loan rate)

Say ‘This is your total due:’ Result

Say ‘Principal & interest:’ principal interest

…

Exit

…

CalcTotalDue: Procedure

Parse Arg principal interest .

total = principal*(1 + interest)

Return total

➢ No visibility of variables from main program unless

specifically requested – most common

Visibility of Variables in Procedures

Variable used for

something else in

the program

Does not

effect variable

of same name

in main

program

Value of anything

here becomes

value of “Result”

variable

Indicates no exposure of

variables from main program

Value from Return

statement in

Procedure

34 © 2014, 2023 IBM CorporationRexx Language Coding Techniques

IBM Z

total = 855

…

loan = 100

rate = 0.10

Call CalcTotalDue(loan rate)

Say ‘This is your total due:’ result

Say ‘Principal & interest:’ principal interest

…

Exit

…

CalcTotalDue: Procedure

Parse Arg principal interest .

total = principal*(1 + interest)

Return total

➢ No visibility of variables from main program unless

specifically requested

Visibility of Variables in Procedures

Variable used for

something else in

the program

Does not

effect variable

of same name

in main

program

Value of anything

here becomes

value of “Result”

variable

Output:
This is your total due: 110.00
Principal & interest: PRINCIPAL INTEREST

35 © 2014, 2023 IBM CorporationRexx Language Coding Techniques

IBM Z

loan = 100

rate = 0.10

Call CalcTotalDue(loan rate)

Say ‘This is your total due:’ total

Say ‘Principal & interest:’ principal interest

…

Exit

…

CalcTotalDue: Procedure Expose total

Parse Arg principal interest .

total = principal*(1 + interest)

Return

➢ Exposing variables from main program to a Procedure

Visibility of Variables in Procedures

No need to

Return “total”

as “Result”

Brings in value

of this variable

from main

program

BEWARE:

Also

changes

value in main

program

Never set in main

program, only set

in Procedure

36 © 2014, 2023 IBM CorporationRexx Language Coding Techniques

IBM Z

loan = 100

rate = 0.10

Call CalcTotalDue(loan rate)

Say ‘This is your total due:’ total

Say ‘Principal & interest:’ principal interest

…

Exit

…

CalcTotalDue: Procedure Expose total

Parse Arg principal interest .

total = principal*(1 + interest)

Return

➢ Exposing variables from main program to a Procedure

Visibility of Variables in Procedures

No need to

Return “total”

as “result”

Brings in value

of this variable

from main

program

BEWARE:

Also

changes

value in main

program

Note never set in

main program,

only set in

Procedure

Same output:
This is your total due: 110.00
Principal & interest: PRINCIPAL INTEREST

37 © 2014, 2023 IBM CorporationRexx Language Coding Techniques

IBM Z

loan = 100

rate = 0.10

Call CalcTotalDue(loan rate)

totaldue = Result

Say totaldue

…

Exit

…

CalcTotalDue: Procedure

Parse Arg principal interest .

total = principal*(1 + interest)

Return ‘Total due:’ total

➢ Returning variables from a Procedure to the main program

Returning Variables from Functions and Procedures

Can return any

expression (literals,

variables, etc.)

All data from “Return”

statement is assigned

as a string to “Result”

variable

38 © 2014, 2023 IBM CorporationRexx Language Coding Techniques

IBM Z

loan = 100

rate = 0.10

Call CalcTotalDue(loan rate)

totaldue = Result

Say totaldue

…

Exit

…

CalcTotalDue: Procedure

Parse Arg principal interest .

total = principal*(1 + interest)

Return ‘Total due:’ total

➢ Returning variables from a Procedure to the main program

Returning Variables from Functions and Procedures

Can return any

expression (literals,

variables, etc.)

All data from “Return”

statement is assigned

as a string to “result”

variable

Output:
Total due: 110.00

39 © 2014, 2023 IBM CorporationRexx Language Coding Techniques

IBM Z

Calling a Subroutine vs External Routine

➢ From within a Rexx EXEC, call another Rexx EXEC

• As an external routine
’EXEC CALCINTEREST’ amountborrowed

If rc=0 Then

Parse Pull amountdue

• As a subroutine
Call CalcInterest amountborrowed

amountdue = Result

Processed as a variable
unless in quotes. Be

aware of case sensitivity

40 © 2014, 2023 IBM CorporationRexx Language Coding Techniques

IBM Z

Calling a Subroutine vs External Routine

• External calls
• Receive data

• Parameters (aka arguments)

• On the stack

• Return data

• In a return code (variable rc)

• Must be a whole number

• On the stack

• Subroutines
• Receive data

• Parameters (aka arguments)

• Visible variables

• On the stack

• Return data in

• Result variable

• Other visible variables

• On the stack

No variable visibility Controlled variable visibility

41 © 2014, 2023 IBM CorporationRexx Language Coding Techniques

IBM Z

Parsing

42 © 2014, 2023 IBM CorporationRexx Language Coding Techniques

IBM Z

Keyword Instruction: Parse

➢ Parse

• Allows the use of a template to split a source string into multiple
components

• Syntax:

➢ Short forms to some of these instructions exist

• NOT RECOMMENDED

• But you may see them in another user’s code you must maintain
• ARG

▪ Short form for Parse Upper Arg

• PULL
▪ Short form for Parse Upper Pull

43 © 2014, 2023 IBM CorporationRexx Language Coding Techniques

IBM Z

Parse Templates

➢ Simple template

• Divides the source string into blank-delimited words and assigns them to the

variables named in the template

• The last variable gets the rest of the string exactly as entered

datastring = ‘ Write the blank-delimited string ’

Parse Var datastring firstvar secondvar thirdvar fourthvar

firstvar -> ‘Write’

secondvar -> ‘the’

thirdvar -> ‘blank-delimited’

fourthvar -> ‘ string ’

44 © 2014, 2023 IBM CorporationRexx Language Coding Techniques

IBM Z

Parse Templates – Blank Delimiter

➢ Simple template

• A period (aka a dot) is a placeholder in a template

• A “dummy” variable used to collect unwanted data

• Notice the consecutive single quotes so the single quote is recognized as part of the string

datastring = ‘Last one gets what’’s left’
Parse Var datastring firstvar . secondvar

firstvar -> “Last”
secondvar -> “gets what’s left”

• Often used at the end of Parse statement to take “the rest of the data”

datastring = ‘Last one gets what’’s left’
Parse Var datastring firstvar secondvar .

firstvar -> “Last”
secondvar -> “one”

• Causes the last variable to get the last word without leading and trailing blanks

datastring = ‘ Write the blank-delimited string ’
Parse Var datastring firstvar secondvar thirdvar fourthvar .
firstvar -> ‘Write’
secondvar -> ‘the’
thirdvar -> ‘blank-delimited’
fourthvar -> ‘string’

45 © 2014, 2023 IBM CorporationRexx Language Coding Techniques

IBM Z

Parse Templates – Literal or Variable Delimiter

➢ String pattern template

• A literal or variable string pattern indicating where the source string
should be split

• Assumes blank-delimited if no other pattern specified

datastring = ‘ Write the blank-delimited string ’

Literal:

Parse Var datastring firstvar ‘-’ secondvar .

Variable:

delim = ‘-’
Parse Var datastring firstvar (delim) secondvar .

Outcome (the same in both cases):

firstvar -> ‘ Write the blank’
secondvar -> ‘delimited’

Literal

delimited

Blank

delimited

46 © 2014, 2023 IBM CorporationRexx Language Coding Techniques

IBM Z

Parse Templates – Positional Delimiter

➢ Positional pattern template

• Use numeric values to identify the character positions at which to split data in the source
string

• An absolute positional pattern is a number or a number preceded by an equal sign
----+----1----+----2----+----3----+----4----+

datastring = ‘Cowlishaw Mike UK ’
Parse Var datastring =1 surname =20 chrname =35 country =46 .

surname -> ‘Cowlishaw ’
chrname -> ‘Mike ’
country -> ‘UK ’

• A relative positional pattern is a number preceded by a plus or minus sign

• Plus or minus indicates movement right or left, respectively, from the last match
----+----1----+----2----+----3----+----4----+

datastring = ‘Cowlishaw Mike UK ’
Parse Var datastring =1 surname +19 chrname +15 country +11 .

surname -> ‘Cowlishaw ’
chrname -> ‘Mike ’
country -> ‘UK ’

47 © 2014, 2023 IBM CorporationRexx Language Coding Techniques

IBM Z

Parse Templates . . .

➢ Positional pattern template – removing blanks

• Specify an absolute positional pattern

• Insert periods to strip blanks
----+----1----+----2----+----3----+----4----+

datastring = ‘Cowlishaw Mike UK ’
Parse Var datastring =1 surname . =20 chrname . =35 country .

surname -> ‘Cowlishaw’
chrname -> ‘Mike’
country -> ‘UK’

If data starts in column 1 and is blank-delimited, this is the same as
Parse Var datastring surname chrname country

• Warning – won’t work if any of the data has more than one “word”

• ----+----1----+----2----+----3----+----4----+
datastring = ‘Cowlishaw, Jr. Mike UK ’
Parse Var datastring =1 surname . =20 chrname . =35 country .

surname -> ‘Cowlishaw,’
chrname -> ‘Mike’
country -> ‘UK’ Blank

delimited

48 © 2014, 2023 IBM CorporationRexx Language Coding Techniques

IBM Z

Summary

➢ Part 1

• Rexx products

• External environments and interfaces

• Instructions, functions, and subroutines

• Variable visibility

• Parsing

➢ Part 2

• Rexx compound variables vs. data stack

• I/O

• Troubleshooting

• Programming style and techniques

• Other Rexx products and projects

➢ Additional material included in hand-out, not covered in session

49 © 2014, 2023 IBM CorporationRexx Language Coding Techniques

IBM Z

Tracy Dean

Product Manager, z/VM Tools and IMS Tools

tld1@us.ibm.com

50 © 2014, 2023 IBM CorporationRexx Language Coding Techniques

IBM Z

Thank You

Merci

Grazie

Gracias

Obrigado

Danke

Japanese

English

French

Russian

GermanItalian

Spanish

Brazilian Portuguese

Arabic

Traditional Chinese

Simplified Chinese

Tamil

Thai

Korean
Hindi

Ndzi khense ngopfu
Tsonga

Ke a leboha
Tswana

	Slide 1
	Slide 3: Agenda
	Slide 5: Rexx Interpreter and Libraries
	Slide 6: The Rexx Products
	Slide 7: Why Use a Rexx Compiler?
	Slide 8
	Slide 9: External Environments
	Slide 10: Host Command Environments in z/OS
	Slide 11: Other z/OS Host Command Environments
	Slide 22: Host Command Environments in z/VM
	Slide 23: Multiple Methods to Specify External Environment
	Slide 24: Multiple Methods to Specify External Environment
	Slide 25
	Slide 26: Instructions vs Functions vs Subroutines
	Slide 27: Functions
	Slide 28: Subroutines
	Slide 29
	Slide 30: Variable Declaration
	Slide 31: Visibility of Variables
	Slide 32: Visibility of Variables in Functions and Subroutines
	Slide 33: Visibility of Variables in Procedures
	Slide 34: Visibility of Variables in Procedures
	Slide 35: Visibility of Variables in Procedures
	Slide 36: Visibility of Variables in Procedures
	Slide 37: Returning Variables from Functions and Procedures
	Slide 38: Returning Variables from Functions and Procedures
	Slide 39: Calling a Subroutine vs External Routine
	Slide 40: Calling a Subroutine vs External Routine
	Slide 41
	Slide 42: Keyword Instruction: Parse
	Slide 43: Parse Templates
	Slide 44: Parse Templates – Blank Delimiter
	Slide 45: Parse Templates – Literal or Variable Delimiter
	Slide 46: Parse Templates – Positional Delimiter
	Slide 47: Parse Templates . . .
	Slide 48: Summary
	Slide 49
	Slide 50

