
2019 VM Workshop 1

Securing RXSOCKET
applications with TLS
Presenters:

Perry Ruiter

Dave Jones

2019 VM Workshop 2

Abstract

VM 6.4 included support for securing IUCV based sockets with
TLS. Sadly 6.4 did not enhance Rexx Sockets to exploit that
support. Now that 7.1 has shipped (still) without TLS support in
Rexx Sockets, customers are forced to take matters into their own
hands. Attend this session for an overview of z/VM's SSL/TLS
support, what was new in 6.4, the changes done to add TLS
support to Rexx Sockets and finally, we will review a popular Rexx
Sockets application that has been secured with TLS

2019 VM Workshop 3

Agenda

 Introduction

 SSL Configuration in z/VM

 Create in Internal z/VM Certificate Database

 Update z/VM TCP/IP Configuration

 RXSOCKET Updates

 Examples

2019 VM Workshop 4

Trade Marks

Trademarks:
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.

A current list of IBM trademarks is available on the web at IBM copyright and trademark
information - United States (www.ibm.com/legal/us/en/copytrade.shtml).

Linux is a registered trademark of Linus Torvalds in the United States, other countries,
or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

http://www.ibm.com/legal/us/en/copytrade.shtml

2019 VM Workshop 5

Introduction
This document provides practical information for the configuration of secured
(encrypted) communications with a z/VM ® 7.1 system, based on the Secure Socket
Layer/Transport Layer Security (SSL/TLS) technology. Once z/VM SSL/TLS
application servers are configured and started with TCP/IP, z/VM TCP/IP applications
servers can participate in SSL/TLS connections.

SSL == old protocol; TLS = =new protocol

In addition, z/VM TCP/IP supports Dynamic Secured Socket Layer/Transport Layer
Security (Dynamic SSL/TLS) connections. In such connections, application servers
themselves control the level of acceptance of SSL and the digital certificate to be used.

This presentation focuses on the configuration of z/VM RSCLIENT/RSSERVER and
IPGATE application server for SSL/TLS connections, and provides client secure
configuration examples.

It is assumed that the reader has a good understanding of z/VM TCP/IP server
configuration, SSL/TLS concepts and digital certificates.

For a complete information on the SSL implementation in z/VM, refer to z/VM
documentation: TCP/IP Planning and Customization , SC24-6238-xx

2019 VM Workshop 6

SSL CONFIGURATION IN z/VM

Topics

● z/VM SSL implementation global picture
● SSL connection principles
● SSL session general processing steps
● Static SSL connection
● Dynamic SSL connection
● SSL server environment in z/VM
● Concept of « pool »
● Hardware cryptographic support

2019 VM Workshop 7

SSL CONFIGURATION IN z/VM
z/VM SSL implementation global picture

TCPIP S
ecured P

ortsS
tandard P

orts

SSL Server
(SSL0001)SSL Server

(SSL0001)SSL Server
(SSL0001)

 SSLDCSSM
DCSS Management

Keys &
Certificates

BFS

GSKADMIN
(gskkyman)

FTP Server

IPGATE

FTP ClientIPGATE
Static SSL
Dynamic SSL

1

3

2

A

B

C

2019 VM Workshop 8

SSL CONFIGURATION IN z/VM
Secured vs. Standard ports

Example:

 PORT
 :
 80 TCP HTTPSD ; Web server
 :
 81 TCP HTTPSD2 SECURE <label> ; Secure server
 :

Standard port

Secured port

2019 VM Workshop 9

SSL CONFIGURATION IN z/VM
SSL connection principles

A SSL session consists in the following steps (phases):

1) CONNECT
2) HANDSHAKE
3) DATA TRANSMISSION
4) CLOSE

These steps are described below.

2019 VM Workshop 10

SSL CONFIGURATION IN z/VM
SSL session general processing steps

CONNECT step:

In this initial phase, a remote client is requesting a connection with an
application server (IPGATE, FTP...). An SSL server is designated to
handle the secure connection. Two separate connections are
established in the SSL session, depending on whether a static or
dynamic SSL connection is requested. The differences are explained in
the next section

2019 VM Workshop 11

SSL CONFIGURATION IN z/VM
SSL session general processing steps

HANDSHAKE step:

The client initiates a handshake protocol to produce the cryptographic
parameters for the session. The SSL server (on behalf of the
application server) presents the server certificate to the client. If a
certificate validation is required by the client, the certificate signature is
validated using the issuer Certificate Authority (CA) certificate, which
must be available to the client. After validation, the server and the
client:

 • Agree on cryptographic parameters (protocol, algorithms)
 • Generate shared secrets
 • Generate symmetric key from the shared secrets, used to
encrypt/decrypt the data in the connection

2019 VM Workshop 12

SSL CONFIGURATION IN z/VM
SSL session general processing steps

DATA TRANSMISSION step:

● Encrypted data is produced on the client and transmitted to
the server over the network

● Inbound encrypted data received from the remote client is first
decrypted by the SSL servers, then forwarded in clear to the
application server (IPGATE, FTP)

● Outbound unencryted data received from the application
server is encrypted by the SSL server, transmitted to the
remote client over the network and decrypted locally.

2019 VM Workshop 13

SSL CONFIGURATION IN z/VM
SSL session general processing steps

CLOSE step:

When a close request is received from either the client or the
application server, the SSL server sends a close request to the
other party and cleans up the connection.

2019 VM Workshop 14

SSL CONFIGURATION IN z/VM
Static SSL connection

● The secure “SSL attribute” is granted as soon as the session is initially
established (connect phase)

● z/VM TCP/IP application servers (IPGATE, FTP...) are “SSL unaware” which
means that SSL encryption/decryption is completely handled by the TCP/IP
and SSL servers.

● the application server configuration remains unchanged, but secure listening
ports are defined in the TCP/IP server configuration and specified in the
client configuration as well

● In the figure above the green solid line marked with ‘A’, ‘B’, and ‘C’
represents a static SSL connect phase for the IPGATE server

2019 VM Workshop 15

SSL CONFIGURATION IN z/VM
Dynamic SSL connection

● Both the server and the client are able to control the acceptance and the
establishment of the secure “SSL attribute” for the session

● The z/VM application server is “SSL aware” and will itself handle the
communication with the SSL server by mean of a set of specialized APIs and
the use of appropriate digital certificate accessible by the SSL server,

● Secure ports are no longer required with dynamic SSL/TLS, as the application
servers will continue to listen on their standard ports.

● In the figure above the red dashed solid line marked with ‘1’, ‘2’, and ‘3’
represents a dynamic SSL connect phase for the IPGATE server

2019 VM Workshop 16

SSL CONFIGURATION IN z/VM
SSL server environment in z/VM

A z/VM SSL/TLS server environment consists of the following components:

● One TCP/P VM server configured to enable SSL/TLS connections
● One (or more) pools of SSL/TLS servers associated with that TCP/IP

server that implement the actual SSL TLS encryption/decryption
algorithms.

● One DCSS Management Agent virtual machine maintaining SSL/TLS
server cache information in a z/VM shared segment, for the SSL/TLS
server(s) associated to the TCP/IP server

Multiple SSL server environments can be defined in the same z/VM, running
independently from each other

2019 VM Workshop 17

SSL CONFIGURATION IN z/VM
SSL server environment in z/VM

At z/VM 7.1 installation, a default SSL/TLS server environment is created with
the following components

● TCP/IP server TCPIP
● SSL servers SSL0000 n (n =1 to 5)
● DCSS agent SSLDCSSM

The SSL environments rely on certificates defined in Certificate and key
databases. The databases and certificates management tasks (create,
deletion, certificates exports and imports) are performed from the GSKADMIN
virtual machine, by mean of a utility program called gskkyman .

A single database can be used by all SSL server environments.

A single certificate in a database can be used by all the SSL server
environments sharing that database.

2019 VM Workshop 18

SSL CONFIGURATION IN z/VM
Concept of « pool »

z/VM has had for a long time the concept of a “pool” of virtual machines,
all configured to work on the same type of workload, say, performing
SSL/TS encryption.

A pool is defined in the USER DIRECT file via either a USER or
IDENTITY statement followed by the “POOL” statement. An example:

IDENTITY SSL LBYONLY 160M 256M G
POOL LOW 1 HIGH 5 PROFILE TCPSSLU

Creates a set of 5 virtual machines (SSL00001...SSL00005), all having
common characteristics (class G, 160M memory, surrogate logon only,
and based on the TCPSSLU profile).

The default SSL server pool (5 servers shown above) is designed to
serve a maximum of 3000 connections, with a maximum of 600
sessions per server.

2019 VM Workshop 19

SSL CONFIGURATION IN z/VM
Hardware cryptographic support

z/VM SSL is supporting both forms of cryptographic hardware:

CPACF CP-Assisted Cryptographic Facility.
● This is a no charge feature built in the IBM Z ® or Linux One™ cores,

designed to accelerate the use of symmetric algorithms (AES, DES) or hash
functions (SHA-1, SHA-256). No configuration is required as the SSL/TLS
server makes use of this feature automatically.

Crypto Express card.
● Used to accelerate asymmetric algorithms such as clear-key RSA. When

available to the z/VM LPAR, a crypto express card can be used by the
SSL/TLS server, providing that a CYPTO APVIRTUAL statement is coded in
the SSL server z/VM profile (e.g. TCPSSLU).

2019 VM Workshop 20

CREATE INTERNAL z/VM
CERTIFICATE DATABASE

Topics

● GSKADMIN and gskkyman
● Create the database
● Grant read access
● Create the Self-signed CA certificate
● Create the CA-signed server certificate
● Display certificate information

2019 VM Workshop 21

CREATE INTERNAL z/VM
CERTIFICATE DATABASE

GSKADMIN and gskkyman

To create and manage the database, the z/VM user id GSKADMIN is
available.

The utility program gskkyman is used to perform management tasks
against the certificate database.

The GSKADMIN user owns both the BFS file space where the key
database resides and the BFS file space used as SSL server temporary
work space.

GSKADMIN also serves as the SSL server administrative user ID, as well.

2019 VM Workshop 22

CREATE INTERNAL z/VM
CERTIFICATE DATABASE

Create the database

The following information is required to create the database:

● database name – use “Database.kdb”
● database password – user defined
● password expiration – 365 days (one year)
● database record length – use default value 5000
● Comply to FIPS 6 standard – enter 1

2019 VM Workshop 23

CREATE INTERNAL z/VM
CERTIFICATE DATABASE

Create the database

gskkyman

 Database Menu

 1 - Create new database
 2 - Open database
 3 - Change database password
 4 - Change database record length
 5 - Delete database
 6 - Create key parameter file
 7 - Display certificate file (Binary or Base64 ASN.1 DER)

 0 - Exit program

2019 VM Workshop 24

CREATE INTERNAL z/VM
CERTIFICATE DATABASE

Create the database
 Enter option number:

1

Enter key database name (press ENTER to return to menu):
Database.kdb
Enter database password (press ENTER to return to menu):

Re-enter database password:

Enter password expiration in days (press ENTER for no expiration):
365

Enter database record length (press ENTER to use 5000):

Enter 1 for FIPS mode database or 0 to continue:
1

Key database /etc/gskadm/Database.kdb created.

The database has now been created.

2019 VM Workshop 25

CREATE INTERNAL z/VM
CERTIFICATE DATABASE

Create the database

Once the database has been created, the database password must be
stored to allow the SSL server to work with the database with automatic
login. On the main menu, select option 10:
 Expiration: 2020/06/18 10:30:29
 Type: FIPS

 1 - Manage keys and certificates
 2 - Manage certificates
 3 - Manage certificate requests
 4 - Create new certificate request
 5 - Receive requested certificate or a renewal certificate
 6 - Create a self-signed certificate
 7 - Import a certificate
 8 - Import a certificate and a private key
 9 - Show the default key
 10 - Store database password
 11 - Show database record length

 0 - Exit program

Enter option number (press ENTER to return to previous menu):
10

Database password stored in /etc/gskadm/Database.sth.

Press ENTER to continue.

2019 VM Workshop 26

CREATE INTERNAL z/VM
CERTIFICATE DATABASE

Grant read access

First, Select option 0 to exit from the GSKKYMAN program.

The POSIX statement in the TCPSSLU profile used to generate the
default SSL pool sets the SSL server group ownership to security.

At this point, only the GSKADMIN user has access to the files in r/w
mode. We want users from the same group (security) be able to access
the files in read mode. The SSL servers are part of of the security group.

Execute the following openvm commands to grant the read authority for
the security group to the kdb and sth files:

Ready;
openvm permit /etc/gskadm/Database.kdb rw- r-- ---
Ready;
openvm permit /etc/gskadm/Database.sth rw- r-- ---

2019 VM Workshop 27

CREATE INTERNAL z/VM
CERTIFICATE DATABASE

Create the Self-signed CA certificate
 (note: This is just an example for the sake of showing how it’s done. In
most cases, you will be using a certificate created by an external CA.)

Logged on as the GSKADMIN user id, start the gskkyman program:
gskkyman

 Database Menu

 1 - Create new database
 2 - Open database
 3 - Change database password
 4 - Change database record length
 5 - Delete database
 6 - Create key parameter file
 7 - Display certificate file (Binary or Base64 ASN.1 DER)

 0 - Exit program

Enter option number:
2

Enter key database name (press ENTER to return to menu):
Database.kdb
Enter database password (press ENTER to return to menu):

2019 VM Workshop 28

CREATE INTERNAL z/VM
CERTIFICATE DATABASE

Create the Self-signed CA certificate (cont)
 1 - Manage keys and certificates

 2 - Manage certificates
 3 - Manage certificate requests
 4 - Create new certificate request
 5 - Receive requested certificate or a renewal certificate
 6 - Create a self-signed certificate
 7 - Import a certificate
 8 - Import a certificate and a private key
 9 - Show the default key
 10 - Store database password
 11 - Show database record length

 0 - Exit program

Enter option number (press ENTER to return to previous menu):
6

 Certificate Usage

 1 - CA certificate
 2 - User or server certificate

Select certificate usage (press ENTER to return to menu):
1

2019 VM Workshop 29

CREATE INTERNAL z/VM
CERTIFICATE DATABASE

Create the Self-signed CA certificate (cont)

 RSA Key Size

 1 - 1024-bit key
 2 - 2048-bit key
 3 - 4096-bit key

Select RSA key size (press ENTER to return to menu):
2

 Signature Digest Type

 1 - SHA-1
 2 - SHA-224
 3 - SHA-256
 4 - SHA-384
 5 - SHA-512

Select digest type (press ENTER to return to menu):
5

2019 VM Workshop 30

CREATE INTERNAL z/VM
CERTIFICATE DATABASE

Create the Self-signed CA certificate (cont)
 Enter label (press ENTER to return to menu):
ZVMCA
Enter subject name for certificate
 Common name (required):
zvmca

 Organizational unit (optional):
ITC

 Organization (required):
ITC

 City/Locality (optional):

 State/Province (optional):

 Country/Region (2 characters - required):
US

Enter number of days certificate will be valid (default 365):
365

Enter 1 to specify subject alternate names or 0 to continue:
0

Please wait

Certificate created.

2019 VM Workshop 31

CREATE INTERNAL z/VM
CERTIFICATE DATABASE

Create the CA-signed server certificate

 From the Key Management Menu, select option 1 -
Manage keys and certificates

 1 - Manage keys and certificates
 2 - Manage certificates
 3 - Manage certificate requests
 4 - Create new certificate request
 5 - Receive requested certificate or a renewal certificate
 6 - Create a self-signed certificate
 7 - Import a certificate
 8 - Import a certificate and a private key
 9 - Show the default key
 10 - Store database password
 11 - Show database record length

 0 - Exit program
1

2019 VM Workshop 32

CREATE INTERNAL z/VM
CERTIFICATE DATABASE

Create the CA-signed server certificate (cont)

Then select “1” for ZVMCA

Enter option number (press ENTER to return to previous menu):

 Key and Certificate List

 Database: /etc/gskadm/Database.kdb

 1 - ZVMCA

 0 - Return to selection menu

Enter label number (ENTER to return to selection menu, p for previous
list):
1

2019 VM Workshop 33

CREATE INTERNAL z/VM
CERTIFICATE DATABASE

Create the CA-signed server certificate (cont)

 Key and Certificate Menu

 Label: ZVMCA

 1 - Show certificate information
 2 - Show key information
 3 - Set key as default
 4 - Set certificate trust status
 5 - Copy certificate and key to another database
 6 - Export certificate to a file
 7 - Export certificate and key to a file
 8 - Delete certificate and key
 9 - Change label
 10 - Create a signed certificate and key
 11 - Create a certificate renewal request

 0 - Exit program

Enter option number (press ENTER to return to previous menu):

10

2019 VM Workshop 34

CREATE INTERNAL z/VM
CERTIFICATE DATABASE

Create the CA-signed server certificate (cont)

 Certificate Usage

 1 - CA certificate
 2 - User or server certificate
 Select certificate usage (press ENTER to return to menu):

2

Then select option 2

2019 VM Workshop 35

CREATE INTERNAL z/VM
CERTIFICATE DATABASE

Create the CA-signed server certificate (cont)

Then, following the same steps used in creating the CA certificate,
enter the following data for the server certificate:

Key algorithm – RSA
Key size – 2048
Label – SMBSSI
Common name – smbssi
Organizational unit (leave blank)
Organization – ITC
City Locality – (leave blank)
State/Province – (leave blank)
Country – US
Validity – 720
Alternate names – 0

2019 VM Workshop 36

CREATE INTERNAL z/VM
CERTIFICATE DATABASE

Display certificate information

Information about certificates stored in the database can be displayed using
Option 1 from the menu:

 Key and Certificate Menu

 Label: ZVMCA

 1 - Show certificate information
 2 - Show key information
 3 - Set key as default
 4 - Set certificate trust status
 5 - Copy certificate and key to another database
 6 - Export certificate to a file
 7 - Export certificate and key to a file
 8 - Delete certificate and key
 9 - Change label
 10 - Create a signed certificate and key
 11 - Create a certificate renewal request

 0 - Exit program

Enter option number (press ENTER to return to previous menu):

1

2019 VM Workshop 37

CREATE INTERNAL z/VM
CERTIFICATE DATABASE

Display certificate information

 Certificate Information

 Label: ZVMCA
 Record ID: 11
 Issuer Record ID: 11
 Trusted: Yes
 Version: 3
 Serial number: 5d0a8f8000087035
 Issuer name: zvmca
 ITC
 ITC
 US
 Subject name: zvmca
 ITC
 ITC
 US
 Effective date: 2019/06/19
 Expiration date: 2020/06/18
 Signature algorithm: sha512WithRsaEncryption
 Issuer unique ID: None
 Subject unique ID: None
 Public key algorithm: rsaEncryption
 Public key size: 2048
 Public key: 30 82 01 0A 02 82 01 01 00 A1 26 8F 88 5F EC 6C
 47 10 E6 2B DF 31 3D 7C C9 CE 31 EE 32 4B 44 13
 8D 7F 77 F6 FC 97 B5 79 2B C9 BB 90 97 0E FA C2
 C3 69 43 0B A0 0E 61 BB 50 CA BA 89 65 40 7B A7
 71 C3 DD E3 02 93 87 24 F3 05 62 16 83 B8 67 B0
 BC BF FE DF 07 02 80 3F 52 44 7A 70 DE CE 6F C7
 E1 EA 69 0D 75 23 49 C7 C2 27 EB A7 81 A1 14 9A
 EE C7 C6 1D CE E1 1A 90 24 7B 46 9F E2 6B 97 EE
 CB 85 65 96 32 38 0F F1 B2 57 8C 26 BA 55 3E 4C
 3D 00 83 4F 26 61 58 36 91 D9 15 09 7D DD 3B 28
 B1 04 3A EB 8D 36 1D C2 6B 0F F7 EF 5A 64 DE C3
 58 92 37 1A C5 84 97 96 A9 E0 B1 F7 4B FC 68 D0
 E6 F3 D5 72 E2 4E 54 A6 5F A1 4E BE 87 2E 17 C6
 FE 83 A0 BC D7 C5 8C 73 A8 A6 BB F5 AA CE 47 F8
 7C CE 22 17 8E 8F DF AB F4 B4 5F 22 77 8C 3B 97
 96 A5 31 A3 9F BA 51 77 82 BE 43 50 20 39 65 17

2019 VM Workshop 38

CREATE INTERNAL z/VM
CERTIFICATE DATABASE

Display certificate information
 10 FD 4B 08 DF D5 CF 36 A1 02 03 01 00 01

 Number of extensions: 4

Enter 1 to display extensions, 0 to return to menu:

1

 Certificate Extensions List

 1 - subjectKeyIdentifier
 2 - authorityKeyIdentifier
 3 - keyUsage (critical)
 4 - basicConstraints (critical)

Enter extension number (press ENTER to return to previous menu):
1

 49 DA C1 22 5E D6 FB 60 E3 74 C4 0D FE F4 25 85
 08 4D 9B 47

Press ENTER to continue.

 Certificate Extensions List

 1 - subjectKeyIdentifier
 2 - authorityKeyIdentifier
 3 - keyUsage (critical)
 4 - basicConstraints (critical)

Enter extension number (press ENTER to return to previous menu):
2

Key identifier:
 49 DA C1 22 5E D6 FB 60 E3 74 C4 0D FE F4 25 85
 08 4D 9B 47

Press ENTER to continue.

2019 VM Workshop 39

UPDATE z/VM TCP/IP
CONFIGURATION

Topics

 Update the SYSTEM DTCPARMS file
 Update the PROFILE TCPIP file
 Restart TCPIP
 Check log file
 QUERY NAMES

2019 VM Workshop 40

UPDATE z/VM TCP/IP
CONFIGURATION

 Update the SYSTEM DTCPARMS file

Log onto the TCPMAINT user id. Insure that the TCPMAINT 198
mdisk is accessed as file mode D.

Edit the SYSTEM DTCPARMS file and add the following line.

 XEDIT SYSTEM DTCPARMS D

 .**
 .* SYSTEM DTCPARMS created by DTCIPWIZ EXEC on 26 Dec 2016
 .* Configuration program run by MAINT640 at 18:09:59
 .**
 :nick.TCPIP :type.server
 :class.stack
 .* :attach.0800-0802
 :DCSS_Parms.<DEFAULT>

2019 VM Workshop 41

UPDATE z/VM TCP/IP
CONFIGURATION

 Update the PROFILE TCPIP file

Edit the PROFILE TCPIP file and add the following lines.

 XEDIT PROFILE TCPIP D

SSLSERVERID * TIMEOUT 60
; SSLLIMITS MAXSESSIONS 3000 MAXPERSSLSERVER 600

● The “*” wildcard is used to tell the TCP/IP server that the SSL servers are taken for the SSL server
pool associated to the TCP/IP stack. This is the default pool with prefix SSL. Note that the prefix
must not be specified in the statement, only the wildcard. The association between the TCP/IP
server and the SSL server pool is established in the DTCPARMS file

● The timeout is the number of seconds to wait for the TCP/IP server before starting the other
TCP/IP servers specified in the AUTOLOG statement. The default value is 30.

2019 VM Workshop 42

UPDATE z/VM TCP/IP
CONFIGURATION

 Restart the TCPIP server

From the TCPMAINT user id

FORCE TCPIP
XAUTOLOG TCPIP

2019 VM Workshop 43

UPDATE z/VM TCP/IP
CONFIGURATION

 Check the log file

.........
TCPIP : DTCRUN1038I Server is configured to support secure connections
TCPIP : DTCRUN1034I Associated SSL server pool: SSL*
.........
.........
TCPIP : DTCRUN1043I Initiating XAUTOLOG of server SSLDCSSM
.........
.........
SSLDCSSM: HCPNSD440I Saved segment TCPIP was successfully defined in file
SSLDCSSM: HCPNSS440I Saved segment TCPIP was successfully saved in file
.........
.........
TCPIP : 11:02:10 DTCSSL044I SSL Server SSL00001 is available to handled secure
connections
:

TCPIP : 11:02:13 DTCSSL044I SSL Server SSL00003 is available to handle secure connections
TCPIP : 11:02:13 DTCSSL044I SSL Server SSL00004 is available to handle secure connections
TCPIP : 11:02:13 DTCSSL044I SSL Server SSL00002 is available to handle secure connections
TCPIP : 11:02:13 DTCSSL044I SSL Server SSL00005 is available to handle secure connections

2019 VM Workshop 44

UPDATE z/VM TCP/IP
CONFIGURATION

 QUERY NAMES

query names
DAVE - 0200, EJAGGER -L0005, PAULG - DSC , PERFSVM - DSC
MONWRITE - DSC , BATCH - DSC , RSCSAUTH - DSC , RSCS - DSC
RSCSDNS - DSC , IPGATE - DSC , GCS - DSC , SSL00005 - DSC
SSL00004 - DSC , SSL00003 - DSC , SSL00002 - DSC , WEB390 - DSC
VMNFS - DSC , REXECD - DSC , PORTMAP - DSC , FTPSERVE - DSC
ZVMSFS - DSC , SSL00001 - DSC , SSLDCSSM - DSC , TCPIP - DSC
DATAMOVE - DSC , DIRMAINT - DSC , DTCVSW4 - DSC , DTCVSW3 - DSC
DTCVSW2 - DSC , DTCVSW1 - DSC , VMSERVP - DSC , VMSERVR - DSC
VMSERVU - DSC , VMSERVS - DSC , OPERSYMP - DSC , DISKACNT - DSC
EREP - DSC , OPERATOR - 0020, MAINT -L0004
VSM - TCPIP
Ready; T=0.01/0.01 07:22:36

2019 VM Workshop 45

RXSOCKET Updates

Topics

● New functions
● Syntax

2019 VM Workshop 46

RXSOCKET Updates

New Functions

The RXSOCKET routine now supports 5 new functions (or “cmds”) in the IOCTL
call:

1)SIOCSECCLIENT Start a secure TLS session for a client
2)SIOCSECSERVER Start a secure TLS session for a server
3)SIOCTLSQRY Determine if a TLS/SSLserver is available
4)SIOCSECCLOSE Stop a secure TLS session
5)SIOCSECSTATUS Request details about a session

(All done by Perry in under 2 hours….)

2019 VM Workshop 47

RXSOCKET Updates

New Functions

First, verify that the correct version of the RXSOCKET module is being used:

rxsocket version: REXX/SOCKETS 3.04 12 April 1996 TLS

 'NUCXDROP RXSOCKET'
 rxsversion = socket("Version")
say 'rxsocket version:' rxsversion

2019 VM Workshop 48

RXSOCKET Updates
Syntax

SOCKET (‘IOCTL’, sock_id, ’SIOCSECCLIENT’, SecDetail_struct)

sock_id is the identifier of the socket.
SecDetail_struct is the following data structure

TLSLabel DS CL8
TLStimeout DS F
requestClientCert DS FL1
validatePeerCert DS X
cipher_request DS X
reserved1 DS X
keyring DS CL50
buflen DS H
buffer DS CL255

 TLStimeout - currently not used and must be 0

requestClientCert - currently not implemented and must be 0

validatePeerCert - client only - 0 = Full Check; 1 =No Check

cipher_request - may use SSLV2? 0 = default cipher suite used; 1 = V2 is not allowed

keyring - currently not used and must be blank

2019 VM Workshop 49

RXSOCKET Updates
Syntax

SOCKET (‘IOCTL’, sock_id, ’SIOCSECSERVER’, SecDetail_struct)

sock_id is the identifier of the socket.
SecDetail_struct is the following data structure

TLSLabel DS CL8
TLStimeout DS F
requestClientCert DS FL1
validatePeerCert DS X
cipher_request DS X
reserved1 DS X
keyring DS CL50
buflen DS H
buffer DS CL255

 TLStimeout - currently not used and must be 0

requestClientCert - currently not implemented and must be 0

validatePeerCert - client only - 0 = Full Check; 1 =No Check

cipher_request - may use SSLV2? 0 = default cipher suite used; 1 = V2 is not allowed

keyring - currently not used and must be blank

2019 VM Workshop 50

RXSOCKET Updates
Syntax

SOCKET (‘IOCTL’, sock_id, ’SIOCTLSQRY’, QueryTLS_struct)

sock_id is the identifier of the socket.
QueryTLS_struct is the following data structure

TLSkeyring - currently not used and must be blank

TLSLabel DS CL8
TLSKeyring DS CL50

2019 VM Workshop 51

RXSOCKET Updates
Syntax

SOCKET (‘IOCTL’, sock_id, ’SIOCSECCLOSE’, CloseReq_struct)

sock_id is the identifier of the socket.
CloseReq_struct is the following data structure

CloseLen DS H
CloseBuff DS CL255

2019 VM Workshop 52

RXSOCKET Updates
Syntax

SOCKET (‘IOCTL’, sock_id, ’SIOCSECSTATUS’) with rc SecStatus

sock_id is the identifier of the socket.
rc is the return code
SecStatus is the following data structure

SecLevel DS F
CipherClass DS X
CipherHash DS X
CipherAlgorithm DS X
CipherPKAlgorithm DS X
CipherKeyLength DS F

SecLevel:
 0 = Not Secure, 1 = Statically Secured, 2 =Dynamically Secured
CipherClass:
 0 = NULLclass, 1 = SSLV2, 2 = SSLV3, 3 = TLS,4=TLS10, 5=TLS11, 6=TLS12
CipherHash:
 0 = SHA1, 1 = MD5, 2 = NULL, 3 = SHA2, 4 =SHA256, 5 = SHA384
CipherAlgorithm:
 0 = NULL, 2 = RC4, 4 = DES3, 7 = AES, 8 = AESGCM, 9 = AES128,
 10 = AES128GCM, 11 = AES256, 12 =AES256GCM
CipherPKAlgorithm:
 0 = NULL, 1 = RSA, 2 = DH_DSS, 3 = DH_RSA, 4 =DHE_DSS, 5 = DHE_RSA,
 6 = ECDH_ECDSA, 7 =ECDHE_ECDSA, 8 = ECDH_RSA, 9 = ECDHE_RSA

2019 VM Workshop 53

Examples

Topics

● Useful Utility functions
● RSCLIENT/RSSERVER
● IPGATE

2019 VM Workshop 54

Examples

Useful Utility functions

DisplaySecStatus: procedure

 parse arg SecLevel +4 CipherClass +1 CipherHash +1 CipherAlgorithm +1,
 CipherPKAlgorithm +1 CipherKeyLength +4 .
 say "SecLevel:" c2d(SecLevel,4)
 say "CipherClass:" c2d(CipherClass,1)
 say "CipherHash:" c2d(CipherHash,1)
 say "CipherAlgorithm:" c2d(CipherAlgorithm,1)
 say "CipherPKAlgorithm:" c2d(CipherPKAlgorithm,1)
 say "CipherKeyLength:" c2d(CipherKeyLength,4)

return

2019 VM Workshop 55

Examples

Useful Utility functions

 BuildSecureDetail: procedure expose tlslabel
 return left(tlslabel,8)||,
 '00000000'x||,
 '00'x||,
 '00'x||,
 '00'x||,
 '00'x||,
 left(' ',50)||,
 '0000'x||,
 left(' ',255)

2019 VM Workshop 56

Examples

Useful Utility functions

BuildQueryTLS: procedure expose tlslabel
return left(tlslabel,8)||,
 left(' ',50)

BuildCloseReq: procedure
return '0000'x||,
 Left(' ',255)

2019 VM Workshop 57

Examples
RSCLIENT/RSSERVER

/*- RSCLIENT -- Example demonstrating the usage of REXX Sockets ------*/
/**/
/* (c) Copyright IBM Corporation 1996 */
/* This programming example is to be used as a sample program only. */
/* Although this program may have been reviewed by IBM for accuracy, */
/* there is no guarantee that it is totally free from defects. The */
/* code is being provided on an 'as is' basis without any warranty */
/* expressed or implied. */
/* */
/**/
/* */
 'NUCXDROP RXSOCKET'
trace o
signal on syntax

/* Set error code values */
ecpref = 'RXS'
ecname = 'CLI'
initialized = 0

parse arg argstring
argstring = strip(argstring)
if substr(argstring,1,1) = '?' then do
 say 'RSSERVER and RSCLIENT are a pair of programs which provide an'
 say 'example of how to use REXX/SOCKETS to implement a service. The'
 say 'server must be started before the clients get started. '
 say ' '
 say 'The RSSERVER program runs in its own dedicated virtual machine'
 say 'and returns a number of data lines as requested to the client.'
 say 'It is started with the command: '
 say ' RSSERVER '
 say 'and terminated with the command: '
 say ' HX '
 say ' '
 say 'The RSCLIENT program is used to request a number of arbitrary'
 say 'data lines from the server and can be run concurrently any'
 say 'number of times by different clients until the server is'
 say 'terminated. It is started with the command: '
 say ' RSCLIENT number <server> '
 say 'where "number" is the number of data lines to be requested and'
 say '"server" is the ipaddress of the service virtual machine. (The'
 say 'default ipaddress is the one of the host on which RSCLIENT is'
 say 'running, assuming that RSSERVER runs on the same host.) '
 exit 100
end

/* Split arguments into parameters and options */
parse upper var argstring parameters '(' options ')' rest

/* Parse the parameters */
parse var parameters lines server rest
if ¬datatype(lines,'W') then call error 'E', 24, 'Invalid number'
lines = lines + 0
if rest¬='' then call error 'E', 24, 'Invalid parameters'

/* Parse the options */
do forever
 parse var options token options
 select
 when token='' then leave
 otherwise call error 'E', 20, 'Invalid option "'token'"'
 end
end

/* Initialize control information */
port = '1952' /* The port used by the server */
address command 'IDENTIFY (LIFO'
parse upper pull userid . locnode .
 tlslabel = "SMBSSI"

 rxsversion = socket("Version")
 if subword(rxsversion,words(rxsversion)) <> "TLS" then do
 say "RXSOCKETs does not contain TLS support"
 exit 8
 end

/* Initialize */
 call Socket 'Initialize',tlslabel
if src=0 then initialized = 1
else call error 'E', 200, 'Unable to initialize RXSOCKET MODULE'
if server='' then do
 server = Socket('GetHostId')
 if src¬=0 then call error 'E', 200, 'Cannot get the local ipaddress'
end
ipaddress = server

/* Initialize for receiving lines sent by the server */
s = Socket('Socket')
if src¬=0 then call error 'E', 32, 'SOCKET(SOCKET) rc='src
call Socket 'Connect', s, 'AF_INET' port ipaddress
if src¬=0 then call error 'E', 32, 'SOCKET(CONNECT) rc='src
 Call Socket "Ioctl",s,"SIOCSECCLIENT",BuildSecureDetail()
'
if src¬=0 then call error 'E', 32, 'SIOCSECCLIENT rc='src
 Call Socket "Ioctl",s,"SIOCSECSTATUS"
 say '1 RC:' src
 say '1 res' c2x(res)
 if src = 0 then
 call DisplaySecStatus res

 Call Socket "Ioctl",s,"SIOCTLSQUERY",BuildQueryTLS()
 say '2 query RC:' src
if src¬=0 then call error 'E', 32, 'SIOCTLSQUERY rc='src

call Socket 'Write', s, locnode userid lines
if src¬=0 then call error 'E', 32, 'SOCKET(WRITE) rc='src

/* Wait for lines sent by the server */

2019 VM Workshop 58

Examples
RSCLIENT/RSSERVER

 dataline = ''
 num = 0
 do forever

 /* Receive a line and display it */
 parse value Socket('Read', s) with len newline
 if src¬=0 | len<=0'' then leave
 dataline = dataline || newline
 do forever
 if pos('15'x,dataline)=0 then leave
 parse var dataline nextline '15'x dataline
 num = num + 1
 say right(num,5)':' nextline
 end
 end

 /* Terminate and exit */
 Call Socket "Ioctl",s,"SIOCSECCLOSE",BuildCloseReq()

 call Socket 'Terminate'
 exit 0

 DisplaySecStatus: procedure

 parse arg SecLevel +4 CipherClass +1 CipherHash +1 CipherAlgorithm +1,
 CipherPKAlgorithm +1 CipherKeyLength +4 .
 say "SecLevel:" c2d(SecLevel,4)
 say "CipherClass:" c2d(CipherClass,1)
 say "CipherHash:" c2d(CipherHash,1)
 say "CipherAlgorithm:" c2d(CipherAlgorithm,1)
 say "CipherPKAlgorithm:" c2d(CipherPKAlgorithm,1)
 say "CipherKeyLength:" c2d(CipherKeyLength,4)

 return

 BuildQueryTLS: procedure expose tlslabel
 return left(tlslabel,8)||,
 left(' ',50)

 BuildCloseReq: procedure
 return '0000'x||,
 left(' ',255)

 BuildSecureDetail: procedure expose tlslabel
 return left(tlslabel,8)||,
 '00000000'x||,
 '00'x||,
 '00'x||,
 '00'x||,
 '00'x||,
 left(' ',50)||,
 '0000'x||,
 left(' ',255)
 /* Calling the real SOCKET function */
 socket: procedure expose initialized src

 a0 = arg(1)
 a1 = arg(2)
 a2 = arg(3)
 a3 = arg(4)
 a4 = arg(5)
 a5 = arg(6)
 a6 = arg(7)
 a7 = arg(8)
 a8 = arg(9)
 a9 = arg(10)
 parse value 'SOCKET'(a0,a1,a2,a3,a4,a5,a6,a7,a8,a9) with src res
return res

/* Syntax error routine */
syntax:
 call error 'E', rc, '==> REXX Error No.' 20000+rc
return

/* Error message and exit routine */
error: procedure expose ecpref ecname initialized
 type = arg(1)
 retc = arg(2)
 text = arg(3)
 ecretc = right(retc,3,'0')
 ectype = translate(type)
 ecfull = ecpref || ecname || ecretc || ectype
 address command 'EXECIO 1 EMSG (CASE M STRING' ecfull text
 if type¬='E' then return
 if initialized then do
 parse value Socket('SocketSetStatus') with . status severreason
 if status¬='Connected' then do
 say 'The status of the socket set is' status severreason
 end
 Call Socket "Ioctl",s,"SIOCSECCLOSE",BuildCloseReq()
 call Socket 'Terminate'
 end
exit retc

2019 VM Workshop 59

Examples
RSCLIENT/RSSERVER

/*- RSSERVER -- Example demonstrating the usage of REXX Sockets ------*/
/**/
/* (c) Copyright IBM Corporation 1996 */
/* This programming example is to be used as a sample program only. */
/* Although this program may have been reviewed by IBM for accuracy, */
/* there is no guarantee that it is totally free from defects. The */
/* code is being provided on an 'as is' basis without any warranty */
/* expressed or implied. */
/* */
/**/
/* */
trace o
signal on syntax
signal on halt
 'NUCXDROP RXSOCKET'

 tlslabel = "SMBSSI"

 rxsversion = socket("Version")
 if subword(rxsversion,words(rxsversion)) <> "TLS" then do
 say "RXSOCKETs does not contain TLS support"
 exit 8
 end

/* Set error code values */
initialized = 0

parse arg argstring
argstring = strip(argstring)
if substr(argstring,1,1) = '?' then do
 say 'RSSERVER and RSCLIENT are a pair of programs which provide an'
 say 'example of how to use REXX/SOCKETS to implement a service. The'
 say 'server must be started before the clients get started. '
 say ' '
 say 'The RSSERVER program runs on a VM Userid. '
 say 'It returns a number of data lines as requested to the client. '
 say 'It is started with the command: RSSERVER '
 say 'and terminated by issuing HX. '
 say ' '
 say 'The RSCLIENT program is used to request a number of arbitrary'
 say 'data lines from the server. One or more clients can access '
 say 'the server until it is terminated. '
 say 'It is started with the command: RSCLIENT number <server> '
 say 'where "number" is the number of data lines to be requested and'
 say '"server" is the ipaddress of the service virtual machine. (The'
 say 'default ipaddress is the one of the host on which RSCLIENT is'
 say 'running, assuming that RSSERVER runs on the same host.) '
 say ' '
 exit 100
end

/* Split arguments into parameters and options */
parse upper var argstring parameters '(' options ')' rest

/* Parse the parameters */

 parse var parameters rest
 if rest¬='' then call error 'E', 24, 'Invalid parameters specified'

 /* Parse the options */
 do forever
 parse var options token options
 select
 when token='' then leave
 otherwise call error 'E', 20, 'Invalid option "'token'"'
 end
 end

 /* Initialize control information */
 port = '1952' /* The port used for the service */

 /* Initialize */
 say 'RSSERVER: Initializing'
 call Socket 'Initialize', 'RSSERVER'
 if src=0 then initialized = 1
 else call error 'E', 200, 'Unable to initialize SOCKET'
 ipaddress = Socket('GetHostId')
 if src¬=0 then call error 'E', 200, 'Unable to get the local ipaddress'
 say 'RSSERVER: Initialized: ipaddress='ipaddress 'port='port
 /* Initialize for accepting connection requests */
 s = Socket('Socket')
 if src¬=0 then call error 'E', 32, 'SOCKET(SOCKET) rc='src

 call Socket 'Bind', s, 'AF_INET' port ipaddress
 if src¬=0 then call error 'E', 32, 'SOCKET(BIND) rc='src
 call Socket 'Ioctl', s, 'FIONBIO', 'ON'
 if src¬=0 then call error 'E', 36, 'Cannot set mode of socket' s

 call Socket 'Listen', s, 10
 if src¬=0 then call error 'E', 32, 'SOCKET(LISTEN) rc='src

 /* Wait for new connections and send lines */
 timeout = 60
 linecount. = 0
 wlist = ''
 do forever

 /* Wait for an event */
 if wlist¬='' then sockevtlist = 'Write'wlist 'Read * Exception'
 else sockevtlist = 'Write Read * Exception'
 sellist = Socket('Select',sockevtlist,timeout)
 if src¬=0 then call error 'E', 36, 'SOCKET(SELECT) rc='src
 parse upper var sellist . 'READ' orlist 'WRITE' owlist 'EXCEPTION' .
 if orlist¬='' | owlist¬='' then do
 event = 'SOCKET'
 if orlist¬='' then do
 parse var orlist orsocket .
 rest = 'READ' orsocket
 end
 else do
 parse var owlist owsocket .

2019 VM Workshop 60

Examples
RSCLIENT/RSSERVER

 rest = 'WRITE' owsocket
 end
 end
 else event = 'TIME'

 select

 /* Accept connections from clients, receive and send messages */
 when event='SOCKET' then do
 parse var rest keyword ts .

 /* Accept new connections from clients */
 if keyword='READ' & ts=s then do
 nsn = Socket('Accept',s)
 if src=0 then do
 parse var nsn ns . np nia .
 say 'RSSERVER: Connected by' nia 'on port' np 'and socket' ns
 call socket "Ioctl",ns,"SIOCSECSERVER",BuildSecureDetail()
 say src
 end
 end

 /* Get nodeid, userid and number of lines to be sent */
 if keyword='READ' & ts¬=s then do
 parse value Socket('Recv',ts) with len nid uid count .
 if src=0 & len>0 & datatype(count,'W') then do
 if count<0 then count = 0
 if count>5000 then count = 5000
 ra = 'by' uid 'at' nid
 say 'RSSERVER: Request for' count 'lines on socket' ts ra
 linecount.ts = linecount.ts + count
 call addsock(ts)
 end
 else do
 call Socket 'Close',ts
 linecount.ts = 0
 call delsock(ts)
 say 'RSSERVER: Disconnected socket' ts
 end
 end

 /* Get nodeid, userid and number of lines to be sent */
 if keyword='WRITE' then do
 if linecount.ts>0 then do
 num = random(1,sourceline()) /* Return random-selected */
 msg = sourceline(num) || '15'x /* line of this program */
 call Socket 'Send',ts,msg
 if src=0 then linecount.ts = linecount.ts - 1
 else linecount.ts = 0
 end
 else do
 call Socket 'Close',ts
 linecount.ts = 0
 call delsock(ts)
 say 'RSSERVER: Disconnected socket' ts

 end
 end

 end

 /* Unknown event (should not occur) */
 otherwise nop
 end
end

/* Terminate and exit */
 parse value socket("Ioctl",socid,"SIOCSECCLOSE",BuildCloseReq()) with rc rest
 say 'RC:' rc 'rest' rest
call Socket 'Terminate'
say 'RSSERVER: Terminated'
exit 0

/* Procedure to add a socket to the write socket list */
addsock: procedure expose wlist
 s = arg(1)
 p = wordpos(s,wlist)
 if p=0 then wlist = wlist s
return

/* Procedure to del a socket from the write socket list */
delsock: procedure expose wlist
 s = arg(1)
 p = wordpos(s,wlist)
 if p>0 then do
 templist = ''
 do i=1 to words(wlist)
 if i¬=p then templist = templist word(wlist,i)
 end
 wlist = templist
 end
return

/* Calling the real SOCKET function */
socket: procedure expose initialized src
 a0 = arg(1)
 a1 = arg(2)
 a2 = arg(3)
 a3 = arg(4)
 a4 = arg(5)
 a5 = arg(6)
 a6 = arg(7)
 a7 = arg(8)
 a8 = arg(9)
 a9 = arg(10)
 parse value 'SOCKET'(a0,a1,a2,a3,a4,a5,a6,a7,a8,a9) with src res
return res

/* Syntax error routine */
syntax:

2019 VM Workshop 61

Examples
RSCLIENT/RSSERVER

 call error 'E', rc, '==> REXX Error No.' 20000+rc
return

/* Halt exit routine */
halt:
 call error 'E', 4, '==> REXX Interrupted'
return

/* Error message and exit routine */
error:
 type = arg(1)
 retc = arg(2)
 text = arg(3)
 ecretc = right(retc,3,'0')
 ectype = translate(type)
 ecfull = 'RXSSRV' || ecretc || ectype
 say '===> Error:' ecfull text
 if type¬='E' then return
 if initialized
 then do
 parse value Socket('SocketSetStatus') with . status severreason
 if status¬='Connected'
 then say 'The status of the socket set is' status severreason
 End
 Call Socket "Ioctl",s,"SIOCSECCLOSE",BuildCloseReq()
 call Socket 'Terminate'
exit retc
DisplaySecStatus: procedure

 parse arg SecLevel +4 CipherClass +1 CipherHash +1 CipherAlgorithm +1,
 CipherPKAlgorithm +1 CipherKeyLength +4 .
 say "SecLevel:" c2d(SecLevel,4)
 say "CipherClass:" c2d(CipherClass,1)
 say "CipherHash:" c2d(CipherHash,1)
 say "CipherAlgorithm:" c2d(CipherAlgorithm,1)
 say "CipherPKAlgorithm:" c2d(CipherPKAlgorithm,1)
 say "CipherKeyLength:" c2d(CipherKeyLength,4)

return

BuildQueryTLS: procedure expose tlslabel
return left(tlslabel,8)||,
 left('',50)

BuildCloseReq: procedure
return '0000'x||,
 left('',255)

BuildSecureDetail: procedure expose tlslabel
return left(tlslabel,8)||,
 '00000000'x||,
 '00'x||,
 '00'x||,
 '00'x||,
 '00'x||,
 left('',50)||,
 '0000'x||,
 left('',255)

2019 VM Workshop 62

Examples
IPGATE

The SSL/TLS enabled version of IPGATE will be included on the VM Workshop tools
tape. See the comments in the code for additional information.

This version will also have an update by Perry to fix a memory leak error discovered
by Berry van Sleeuwen.

2019 VM Workshop 63

Questions?
Perry Ruiter

Dave Jones

360toz@hushmail.com

vmdave9@gmail.com

Thanks for your time!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

