
Managing and Orchestrating Docker Containers with
OpenShift

1

Neale Ferguson
Sine Nomine
Associates

Things You Need to Know
• There is a lot of material in these slides
• Far more than can be covered in 1 hour
• Provided as reference so you can explore more

deeply
• I will highlight things I believe you need to

understand
• Emphasis will be on showing it in action
• A whitepaper/red-piece is under construction

Preface

• Examples built and run using ClefOS 7.5.1804
• CentOS Clone with name change
• Available for z Systems

• However, as we will see this is irrelevant
• All OpenShift Origin containers are available on dockerhub

under the clefos repository:
https://hub.docker.com/u/clefos/dashboard/

https://hub.docker.com/u/clefos/dashboard/

Docker – underlying
technologies

4

Things You Need to Know

• Docker and other container-based technologies rely on Linux
kernel APIs to provide isolation and infrastructure

• Cgroups
• Copy-on-write

• A daemon is responsible for doing the work via a set of APIs
(OCI-compliant)

• Storage is ephemeral unless otherwise specified

Skip

What is Docker

• An open source project to pack, ship and run any application as
a lightweight container

• Container: self-contained receptacle
• Filesystem
• Apps
• Static data
• Network

Skip

cgroups…

• A kernel feature that limits, accounts for, and isolates the
resource of a collection of processes

• Similar to processes:
• They are hierarchical
• Child cgroups inherit certain attributes from their parent cgroup

• Difference: multiple cgroup hierarchies

…cgroups…

• Can span multiple “subsystems”
• blkio —sets limits on input/output access to and from block
• cpu —uses the scheduler to provide cgroup tasks access to the CPU
• cpuacct —generates automatic reports on CPU resources used by

tasks in a cgroup.

…cgroups…

• Can span multiple “subsystems”
• cpuset —assigns individual CPUs (on a multicore system) and memory
• devices —allows or denies access to devices by tasks in a cgroup
• freezer —suspends or resumes tasks in a cgroup

…cgroups…

• Can span multiple “subsystems”
• memory —sets limits on memory use by tasks in a cgroup, & generates

automatic reports on memory
• net_cls —tags network packets with a class identifier (classid) that

allows the Linux traffic controller (tc) to identify packets originating from
a particular cgroup task.

…cgroups…

• Can span multiple “subsystems”
• net_prio —provides a way to dynamically set the priority of network

traffic per network interface
• ns — the namespace subsystem

Namespaces…

• CLONE_NEWIPC: IPC Namespaces: SystemV IPC and POSIX Message Queues can be isolated.

• CLONE_NEWPID: PID Namespaces: PIDs are isolated, meaning that a virtual PID inside of the namespace can conflict with a PID
outside of the namespace. PIDs inside the namespace will be mapped to other PIDs outside of the namespace. The first PID inside
the namespace will be '1' which outside of the namespace is assigned to init

…Namespaces…

• CLONE_NEWNET: Network Namespaces: Networking (/proc/net, IPs, interfaces and routes) are isolated. Services can be run on the
same ports within namespaces, and "duplicate" virtual interfaces can be created.

• CLONE_NEWNS: Mount Namespaces. We have the ability to isolate mount points as they appear to processes. Using mount
namespaces, we can achieve similar functionality to chroot() however with improved security.

…Namespaces

• CLONE_NEWUTS: UTS Namespaces. This namespaces primary purpose is to isolate the hostname and NIS name.

• CLONE_NEWUSER: User Namespaces. Here, user and group IDs are different inside and outside of namespaces and can be
duplicated.

Copy-on-Write

• Allows Docker to instantiate containers very quickly
• Instead of having to make full copies of the which files comprise

a container, it can use “pointers” back to existing files
• Containers are easily “linked” (or “stacked” or “layered”) to other

containers

Docker Registry (optional)

• A stateless, highly scalable server-side application that stores
and distributes Docker images

• Enables:
• Tight control where images are stored
• Full ownership of distribution pipeline
• Integration of image storage & distribution into an in-house

development workflow

Docker Daemon

• Manages containers
• Creates volumes
• Starts/stops containers
docker daemon -H tcp://0.0.0.0:4243 -H
unix:///var/run/docker.sock

OR
systemctl enable docker
systemctl start docker

Docker – Building Containers

18

Things You Need to Know
• Everything starts with a base image
• Dockerfiles are text files with recipes for building

images based on another image
• Images are held in a registry
• Dockerhub is the public repository
• There are official images that you can trust
• Otherwise… Buyer beware
• Images are run in containers which may be

linked or grouped
Skip

Creating a Starter System

• Base image: containers built from it or descendants
• Create a chroot-like environment

• File system including /dev
• yum install packages
• Trim unwanted stuff
• Create tar ball
• Import to Docker

• “Official Images” – Those accepted by Docker
• ClefOS is now an official image

The Dockerfile

• A recipe for building a container
• Build from an existing container
• Install requirements
• Define network and volume requirements
• Specify command to run on startup

FROM clefos:clefos7

MAINTAINER The ClefOS Project <neale@sinenomine.net>
LABEL Vendor="ClefOS" License="GPLv2" Version="8.0-10.1"

COPY ibm-java-sdk-8.0-1.10-s390x-archive.bin java.rsp dummy-java-1.8-0.el7.noarch.rpm /

RUN yum install -y tar zip && \
mkdir -p /opt/ibm && \
echo "Installing IBM JDK" && \
/ibm-java-sdk-8.0-1.10-s390x-archive.bin -f /java.rsp -i silent && \
yum install -y dummy-java-1.8-0.el7.noarch.rpm && \
yum erase -y tar zip vim-minimal && \
yum clean all && \
rm -f /*.rpm /java.rsp /*.bin

ENV JAVA_HOME=/opt/ibm/java PATH=$JAVA_HOME/bin:$PATH

FROM clefos/nodejs
MAINTAINER The ClefOS project <neale@sinenomine.net>
ADD epel.repo /etc/yum.repos.d/epel.repo
RUN yum install -y git tar gcc gcc-c++ make mongodb mongodb-server \

mongo-tools krb5-devel perl-Digest-SHA && \
npm install -g express && \
npm install -g mongodb && \
npm install -g tar mkdirp

WORKDIR /mean
EXPOSE 27017 28017
VOLUME /mongodb/data
RUN echo "mongod --fork --logpath /mongodb/data/log/mongod.log \

--dbpath /mongodb/data --smallfiles --noprealloc --httpinterface --rest
\

> /start.sh && echo "node \$1" >> /start.sh && \
yum erase -y git tar gcc gcc-c++ make perl-Digest-SHA && \
rm -f /etc/yum.repos.d/epel.repo && \
rm -rf /tmp/* /var/cache/yum/* /root/* /root/.[a-zA-Z0-9]* /src

ENV NODE_PATH=/opt/ibm/nodejs/lib/node_modules:/mean/node_modules
ENTRYPOINT ["sh", "/start.sh"]

Building Images

• Each step corresponds to a layer
• Stop build at one point
• Rebuild starts from last change

Managing Images

[root@docker docker]# docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL
SIZE
sinenomine/fluentd-s390x latest b3e3d646f313 4 days ago 515.2 MB
sinenomine/amhub-s390x latest 76a2c4a387f0 7 days ago 795 MB
sinenomine/ade-s390x latest 5dc6c7c6191c 5 weeks ago 645.8 MB
sinenomine/compose-ui-s390x latest ff5b9eda68ec 8 weeks ago 315.9 MB
sinenomine/nginx-1.8-s390x latest 4f87e1292531 8 weeks ago 211 MB
sinenomine/clefos71-base-s390x latest 60ef3a8ba174 3 months ago 110.5 MB
clefos-base-s390x latest 60ef3a8ba174 3 months ago 110.5 MB
sinenomine/clefos71-nodejs-s390x latest d76f12128dde 5 months ago 548.7 MB
sinenomine/mariadb-5.5-s390x latest 91233ea5a5c1 5 months ago 311.3 MB
sinenomine/clefos71-java-s390x latest 3cb8ef8fd562 5 months ago 480.2 MB

Making Images Available

[root@docker ~]# docker push sinenomine/fluentd-s390x:latest
The push refers to a repository [docker.io/sinenomine/fluentd-s390x] (len: 1)
b3e3d646f313: Pushed
1b11901fbead: Pushed
5f6ab7c78e8b: Pushed
288d092713a6: Pushed
f86e5eb99f4b: Pushed
:
d69fc3fad8fa: Pushed
732e18ef67b6: Pushed
7196f6de1451: Pushed
7118afa06d84: Pushed
ec3ec425b681: Pushed
60ef3a8ba174: Pushed
latest: digest:
sha256:120519d3d8f0cf00a0caddb3fd8c0c6148b8145dbf6fed2897b36e965d35424d size:
29665

Dockerhub

Running Containers

• Persistent data goes to [a] volume[s]
• Run a standalone container

• All functionality within the container
• Run a “swarm” of containers

• Typically database server
• Web server
• Application server

Running Containers

Ø docker run --name=mariadb -v /var/local/mariadb:/var/lib/mysql -d -p 3306:3306 -e
MYSQL_ROOT_PASSWORD=passw0rd sinenomine/mariadb-5.5-s390x:latest mysqld_safe --connect-
timeout=30

Ø docker run --rm -i -t --name=ade -p 8022:22 --link=mariadb -v /var/local/ade:/var/local/ade -e
MARIADB_ROOT_PASSWORD=passw0rd -e MARIADB_ADE_PASSWORD=passw0rd sinenomine/ade-s390x

Running Containers

• Containers run as daemons or interactively
• Multiple containers wanting to use same port?

• Docker can remap:
-p <host port>:<container port>

Running Containers

• What about environment variables?
• -e option
• Dockerfile

• What is my container doing:
• docker top <image id>
• top

• What is my container config?
• docker inspect <image>

"Networks": {
"bridge": {

"EndpointID":
"0448a9a68ed5a9c5f89435b3d62d78bbc42d4f601a25e65b2e149ed8f694993c",

"Gateway": "172.18.0.1",
"IPAddress": "172.18.0.3",
"IPPrefixLen": 16,
"IPv6Gateway": "",
"GlobalIPv6Address": "",
"GlobalIPv6PrefixLen": 0,
"MacAddress": "02:42:ac:12:00:03"

}

Running Containers

• Command line
• docker run
• kubernetes

• GUIs
• Compose-UI
• AMHub
• OpenShift

• Images are automatically downloaded

Running Containers

• Build on ClefOS / Run on Ubuntu
• Build on ClefOS / Build upon image on Ubuntu
• Builders meet all pre-requisites
• Self-contain requirements

• No conflicts with other containers
• Unlike multi-tenancy apps

Openshift Origin - Introduction

35

Next slides are derived from https://docs.openshift.org/latest/architecture

https://docs.openshift.org/latest/architecture

Things You Need to Know
• OpenShift is a layer on top of Kubernetes

• OS v3.xx based on K8 v1.xx

• K8 is a manager of containerized apps across a
set of containers and/or hosts

• Concepts of master node, infrastructure node,
and compute node

• Provides registry, router, users, groups, projects,
builds, templates

• Installs via ansible playbooks which takes care of
a lot of the minutiae

What is OpenShift?

• OpenShift is a layer on top of:
• Docker provides the abstraction for Linux-based lightweight container

images
• Kubernetes provides cluster management & orchestrates containers on

multiple hosts
• OpenShift Origin is the Community Edition

3
7

Kubernetes

• Manages containerized applications across a set of containers
or hosts

• Provides mechanisms for deployment, maintenance, and
application-scaling

3
8

Kubernetes Components

Component Description
API Server Validates and configures the data for pods, services, and replication

controllers. It also assigns pods to nodes and synchronizes pod
information with service configuration

etcd Stores the persistent master state while other components watch etcd
for changes to bring themselves into the desired state

Controller Manager Watches etcd for changes to replication controller objects and then
uses the API to enforce the desired state

HAProxy Option to balance load between API master endpoints.

What is OpenShift

• OpenShift Origin adds:
• Source code management, builds, and deployments for developers
• Managing and promoting images at scale as they flow through your

system
• Application management at scale
• Team and user tracking for organizing a large developer organization
• Networking infrastructure that supports the cluster

4
0

41

OpenShift Core

• Containers & images are the building blocks for deploying
applications

• Pods & services allow for containers to communicate with each
other and proxy connections

• Projects and users provide the space and means for
communities to organize and manage their content together

OpenShift Core

• Builds & image streams allow you to build working images and
react to new images

• Deployments add expanded support for the development and
deployment lifecycle

• Routes announce your service to the world
• Templates allow for many objects to be created at once based

on customized parameters.

OpenShift Registries

• A service for storing and retrieving Docker-formatted container
images

• A registry contains a collection of one or more image
repositories

• Each image repository contains one or more tagged images

OpenShift Registries

OpenShift Pods

• One or more containers deployed together on one host
• The smallest compute unit that can be defined, deployed, and

managed.
• Rough equivalent of a machine instance to a container
• Each pod is allocated its own internal IP address

OpenShift Pods

• Containers within pods can share their local storage and
networking.

• Pods have a lifecycle: they are defined, assigned to run on a
node, then run until their container(s) exit or are Largely
immutable: changes cannot be made to a pod definition while it
is running

• Changes result in termination & recreation

OpenShift Users

• Interaction with OpenShift Origin is associated with a user
• Users may be placed into groups
• A user object represents an actor which may be granted

permissions in the system by adding roles to them or to their
groups:
• Regular Users
• System Users
• Service Accounts

OpenShift Projects

• A Kubernetes namespace with additional annotations,
• The central vehicle by which access to resources for regular

users is managed
• Allows a community of users to organize and manage their

content in isolation from other communities.
• Users must be given access to projects by administrators

OpenShift Builds

• A build is the process of transforming input parameters into a
resulting object.

• Transform input parameters or source code into a runnable
image

• A BuildConfig object is the definition of the entire build process.
• OpenShift Origin creates Docker-formatted containers from

build images and pushing them to a container registry

OpenShift Persistent Storage

• Pods may run on any node
• Local storage insufficient

• NFS, AWS, iSCSI, GlusterFS, CephFS, or SCSI (zFCP) [and
more]

• Kubernetes < 1.8 (OpenShift < 3.8) has limitation for SCSI

OpenShift Replication and Jobs

• Replication Controllers
• Ensures that a specified number of replicas of a pod are running at all

times
• Jobs

• Similar to replications but designed for one-time pods

OpenShift Deployments

• Provides the ability to transition from an existing deployment of
an image to a new one

• Defines hooks to be run before or after creating the replication
controller

• When triggered a deployer-pod manages the deployment
including scaling down the old replication controller, scaling up
the new one, and running hooks

• Triggers may include such things such as a new image
becoming available

OpenShift Templates

• Describe a set of objects that can be parameterized and
processed to produce a list of objects for creation by OpenShift
Origin

• The objects to create can include anything that users have
permission to create within a project, e.g. services, build
configurations, and deployment configurations.

• May also define a set of labels to apply to every object defined
in the template

OpenShift Origin – Demonstration on Z

55

Things You Need to Know
• Demo system is an “all-in-one”

• 1 virtual machine running
• Master
• Infrastructure
• Compute

• Live demos are unpredictable
• Point your browsers to https://okcd-

master.sinenomine.net:8443
• sna/test or admin/sna

https://okcd-master.sinenomine.net:8443/

Demo Time

• Using the GUI
• Using the CLI
• Examining the registry
• Simple on pod application
• Source-to-Image application (MLB)

• JBOSS (Wildfly) & MongoDB
• Orchestration of multiple pods

• Spark, Hadoop, & Zeppelin

MLB

GitHub OpenShift
Template

WildFly MongoDB

DB

Router

Spark

OpenShift
Template

Spark
Master Hadoop

DB

Router

Spark
DataNode

Spark
NameNode

Zeppelin

62

66

docker exec -it origin bash
bash-4.2# oc login
Authentication required for https://148.100.42.153:8443 (openshift)
Username: sinenomine
Password:
Login successful.

You have one project on this server: "sinenomine"

Using project "sinenomine".
bash-4.2# oc status
In project sinenomine on server https://148.100.42.153:8443

http://148.100.42.153 to pod port 8080-tcp (svc/deployment-example)
dc/deployment-example deploys istag/deployment-example:v2
deployment #1 deployed 8 minutes ago - 1 pod

http://148.100.42.153 to pod port 8080-tcp (svc/hello-openshift)
dc/hello-openshift deploys istag/hello-openshift:latest
deployment #1 deployed 6 minutes ago - 6 pods

oc get pods
NAME READY STATUS RESTARTS AGE
deployment-example-1-ypclg 1/1 Running 0 32m
hello-openshift-1-b61vl 1/1 Running 0 25m
hello-openshift-1-jqkvb 1/1 Running 0 25m
hello-openshift-1-tu25u 1/1 Running 0 25m
hello-openshift-1-v7ra3 1/1 Running 0 30m
hello-openshift-1-vxss9 1/1 Running 0 25m
hello-openshift-1-yw0z7 1/1 Running 0 25m

oc new-app docker.io/sinenomine/lighttpd-s390x:latest
--> Found Docker image 3d4758d (3 weeks old) from docker.io for "docker.io/sinenomine/lighttpd-
s390x:latest"

* An image stream will be created as "lighttpd-s390x:latest" that will track this image
* This image will be deployed in deployment config "lighttpd-s390x"
* Port 8091/tcp will be load balanced by service "lighttpd-s390x"
* Other containers can access this service through the hostname "lighttpd-s390x"

* WARNING: Image "docker.io/sinenomine/lighttpd-s390x:latest" runs as the 'root' user which
may not be permitted by your cluster administrator

--> Creating resources ...
imagestream "lighttpd-s390x" created
deploymentconfig "lighttpd-s390x" created
service "lighttpd-s390x" created

--> Success

svc/lighttpd-s390x - 172.30.232.241:8091
dc/lighttpd-s390x deploys istag/lighttpd-s390x:latest
deployment #1 deployed 50 seconds ago - 1 pod

Openshift Origin – Mixed Platform
Operation

75

Things You Need to Know
• Demo system consists of:

• 1 x86_64 virtual machine running
• Master/Infrastructure/Compute
• Running in SNA DMZ

• 1 s390x virtual machine running
• Compute
• Running on LinuxONE Community Cloud

• Point your browsers to https://oso-dev-
test.svc.sinenomine.net:8443

• sna/test or admin/sna

https://oso-dev-test.svc.sinenomine.net:8443/

Mixed Platform Operation
x8

6_
64 Master

Infra
Compute

s3
90

x Compute

Mixed Platform Operations

oc label node okcd-node.sinenomine.net arch=s390x

spec:
replicas: 1
selector:

deploymentConfig: ${APPLICATION_NAME}-master
template:

:
spec:

containers:
image: docker.io/clefos/spark:2.1.0
imagePullPolicy: IfNotPresent
name: ${APPLICATION_NAME}-master

nodeSelector:
arch: s390x

Mixed Platform Operation

oc describe node
Name: oso-dev-test.svc.sinenomine.net
Roles: compute,infra,master
Labels: beta.kubernetes.io/arch=amd64

beta.kubernetes.io/os=linux
kubernetes.io/hostname=oso-dev-test.svc.sinenomine.net
logging-infra-fluentd=true
node-role.kubernetes.io/compute=true
node-role.kubernetes.io/infra=true
node-role.kubernetes.io/master=true

Mixed Platform Operation

Namespace Name
--------- ----
default docker-registry-1-dqlrd
default registry-console-1-rmzf5
default router-1-95crd
kube-service-catalog apiserver-n5s9v
kube-service-catalog controller-manager-npwp9
kube-system master-api-oso-dev-test.svc.sinenomine.net
kube-system master-controllers-oso-dev-test.svc.sinenomine.net
kube-system master-etcd-oso-dev-test.svc.sinenomine.net
openshift-ansible-service-broker asb-1-rl6tr
openshift-logging logging-curator-1-vnjlg
openshift-logging logging-fluentd-c2jfj
openshift-node sync-8n4kb
openshift-sdn ovs-5kdkc
openshift-sdn sdn-rnmnh
openshift-template-service-broker apiserver-rq9j2
openshift-web-console webconsole-57d88df7d9-wgcpw

Mixed Platform Operation

oc describe node
Name: okcd-node.sinenomine.net
Roles: compute
Labels: arch=s390x

beta.kubernetes.io/arch=s390x
beta.kubernetes.io/os=linux
kubernetes.io/hostname=okcd-node.sinenomine.net
logging-infra-fluentd=true
node-role.kubernetes.io/compute=true

Annotations:
node.openshift.io/md5sum=32ae361b122c8a26a133736689eaf26e

volumes.kubernetes.io/controller-managed-attach-detach=true
CreationTimestamp: Tue, 30 Oct 2018 12:16:40 -0400

Mixed Platform Operation

Namespace Name
--------- ----
openshift-logging logging-fluentd-2fnt5
openshift-node sync-ln6t4
openshift-sdn ovs-txlsb
openshift-sdn sdn-gq897
sinenomine spark-datanode-1-rzpwf
sinenomine spark-master-1-8svnp
sinenomine spark-namenode-1-27jsj
sinenomine spark-ui-proxy-1-99b7x
sinenomine spark-worker-1-pzv98
sinenomine spark-worker-1-vdwmn
sinenomine spark-zeppelin-1-ktwqj

