

Intro to Rexx
Hands-On Workshop

2015 VM Workshop
Binghamton University

Binghamton, NY

Chip Davis
chip@aresti.com

Topics

● A whirlwind intro to Rexx
● A couple of quick demos
● Some hands-on problems
● Yes, suggested solutions will be given

Null

Label

Assignment

Instruction

Command

/* comment */
 [or blank line]

symbol:

 Get_Args: exit:

symbol = expression

 foo = Length(bar'/'baz) + 2

keyword [expression]

 If, Do, Say, Parse, Else, ...

expression

 'CP QUERY' spool splid

Rexx Statements
Statements are analyzed in this order:

Rexx Symbols
 Used as variables and labels

Allowed Characters: [A - Z] [a - z] [0 - 9] _ . ? !

 (some platforms allow extra non-ANSI characters)

Format: Must NOT start with . or [0 - 9]

Mixed case allowed: Yes

Case-sensitive: No, automatically uppercased

Max Symbol Length: 250 characters

 A symbol used as a variable may reference a string up to
16 MB long.

Rexx Expressions

● Any sensible combination of:

 Constants Variables Operators Functions

● Blanks may be used between them for readability

● Evaluation order:

– from inner to outer nested parentheses

– by operator precedence

– from left to right
● Evaluation results in a single character string

● A zero-length string is valid and called the "null string"

● Conversion to internal numeric form is done only when
operation calls for it (e.g. decimal arithmetic)

Rexx Constants
● Stored as character strings

– conversion to numeric form only when required
● Length limited to: 16,777,215 chars/decimal digits

● String (must be enclosed in single- or double-quotes)

 'Susie ″Q″' '' ″″ ″Don't look″

● Numeric

2.54 -.088 6.626e-34
● Hex

'F8'x 'D0A'X ″c3c8 c9d7″x
● Binary

'11111000'b '11'B ″1111 0011″b

Rexx Variables
● Simple: symbol

– No '.'s in symbol (default value is SYMBOL)

 x15 !0_1? Last_Matching_Value foo

● Compound: symbol.tail[.tail]...

– '.'s separate stem and tails

– tail may be a numeric constant or simple variable

 matrix.12 tax.form.st vm.mascot

– All tail variable values are substituted, then the
resulting derived name is used to access the value

 MATRIX.12 TAX.1022.NC VM.EdgarBear

– (Re)set ALL stem. variables with: stem. = expr

 matrix. = 0 line. = '' Qin. = x/y+3

Prefix (monadic) + (pos) - (neg) \ (not)

Power (decimal) **

Multiplicative (decimal) * / % //

Additive (decimal) + -

Concatenation || [abbutal] [blank]

Comparison - normal = < > <= >=

----Cparison - strict == << >> <<= >==

Logical AND &

Logical OR/XOR | &&

Rexx Operators
A single expression may contain any or all operators!

Say 'February has' 28 + (yr // 4 = 0) 'days'!

Rexx Functions

● Invokes a subprocedure which returns a string that
replaces the function invocation

– Expression evaluation continues
● Search Order:

– Internal to the running program (symbol:)

– Built-in, Platform Extensions, Function Packages

– External Rexx program (symbol EXEC)

symbol([expr1],[expr2],[...],[exprn])

If \DataType(vaddr,'X') Then Say "Invalid device address"
Say Center(' Monthly Report ',78,'-')
days_between = Abs(Date('B',date1,'U') - Date('B',date2,'U'))
button = "Perl is just Rexx with bad syntax"
Say '"Rexx" is word' WordPos(button, 'Rexx') "of" button"."
Say hex1 '-' hex2 '=' D2X(X2D(hexadr1) - X2D(hexadr2))
If Random(1) Then Say "Heads" ; Else Say "Tails"
If SourceLine(2)='/*Test*/' Then Call Trace '?R'

Rexx Subprocedures 1

● Subprocedure does not know or care how it was invoked

● Invoke as:

– Function: symbol(expr1,expr2,...,exprn)

– Subroutine: CALL symbol expr1,expr2,...,exprn
● Within a subprocedure:

– Get arguments PARSE ARG arg1, arg2, ...

– Return a value RETURN expr
● Returned value will:

– Function: Replace the function invocation

– Subroutine: Replace the value in RESULT variable

Rexx Subprocedures 2

 ...
Call MyTip meal,20
Say "You should leave" result
 -or-
 ...
Say "You should leave" MyTip(meal,20)
 ...
MyTip: Parse Arg tab, pct
 tip = tab / (100 / pct)
 Return '$'Format(tip,,2)

--
x = Length('This is preferred')
 -or-
Call Length('This is dumb')
x = result

Rexx Stream I/O

● CMS has separate Read & Write pointers
● Stream I/O functions

– Stream() Housekeeping

– LineIn() / LineOut() Read/Write a line

– CharIn() / CharOut() Read/Write characters

– Lines() / Chars() Return count of remaining

myfile = 'TEST DATA A'
line42 = LineIn(myfile,42)
line43 = LineIn(myfile)
stat = LineOut(myfile,'This is the new last line')
Say "There are still" Lines(myfile) "left to read."

Read File into Stem Array

Parse Value Stream(myfile,'C','OPEN READ') ,
 With status extra
If status \= 'READY:' Then [...]

line. = ''
Do i = 1 While Lines(fileid) > 0
 line.i = LineIn(fileid)
End i
line.0 = i - 1

/* Now display it on the screen */
Do j = 1 To line.0
 Say 'Line' j':' line.j
End j

Trace [?]type
● Executes statement, then displays source and trace lines

● Many types but you'll only need these three:

– Trace Off No trace output generated

– Trace Results One trace line per line of code

– Trace Intermediates More answer than you have
question...

 42 *-* Return '$'Format(tip,,2)
 >>> "$2.75"

● Interactive tracing: Trace ?type

– Pauses for input after tracing an instruction

– Anything entered at pause point will be executed as
if it were at that line in the program

– Last instruction traced may be re-executed (!)

Trace Identifiers

- Rexx instruction as coded in program

>>> String result of executing instruction

>.> String ignored in Parse template

>C> Derived name of compound variable

>F> String returned from a Function

>L> Literal string encountered

>O> Result of a dyadic operation

>P> Result of a monadic (prefix) operation

>V> String retrieved from a variable

+++ Trace message

If - Then - Else

● cond_expr must evaluate to 0(false) or 1(true)

● THEN and ELSE may be followed by one
statement (which may be NOP)

● Multiple statements may be grouped by
enclosing them in a Do - End block

IF cond_expr
THEN statement
[ELSE statement]

If Length(data) <= lrecl
 Then line.next = data
 Else Do
 Call Error lrecl, data
 Exit 99
 End

Iterated Do-Loops

 Do count_expr
 [statements]
 End

 scale = ''
 Do lrecl % 5 + (lrecl // 5 > 0)
 scale = scale"----+"
 End

 Do ndx_var = beg_expr [To end_expr] [By incr_expr]
 [statements]
 End ndx_var

 merge. = ''
 Do oddndx = 1 To Lines(file1)*2-1 By 2
 merge.oddndx = LineIn(file1)
 End oddndx

Conditional Do-Loops

 Do While cond_expr cond_expr evaluated here
 [statements]
 End

 Do i = 1 While rec.i \= ''
 lrc = Lineout(outfile,rec.i)
 End i

 Do Until cond_expr
 [statements]
 End cond_expr evaluated here

 Do Until rec = 'EOF'
 Say "Enter record:"
 Parse Pull rec
 lrc = LineOut(outfile,rec)
 End

Leave & Iterate
● LEAVE [ndx_var] Terminates loop and continues with

the instruction after the END

● ITERATE [ndx_var] Skips to the END instruction and
returns to the DO instruction to
continue from the top of the loop

● If ndx_var specified, applies to DO ndx_var = ... loop

– Otherwise, applies to current loop
comp. = '' /* Copy non-comment lines to comp. array */
j = 0
Do i = 1 to lines.0
 If line.i = '' Then Leave i /* at EOF, done */
 If Left(line.i,1) = '*' /* Don't copy this line */

 Then Iterate i
 j = j + 1
 comp.j = line.i
End i
comp.0 = j

Parse [Upper]

● A template is constructed from variable names,
patterns, and placeholder '.'s

● If no patterns, string is "word parsed":

– Each blank-stripped word of data string is
assigned to each variable L-R

– If no data for variable, it is assigned the null
string ("")

– If data left over, the last variable is assigned
the remainder of the string (incl. blanks)

 PARSE ARG template(s) Argument string(s)
 PARSE PULL template External data queue/keyboard
 PARSE VAR symbol template String in variable
 PARSE SOURCE template Program metadata
 PARSE VALUE expr WITH template String value of expr

Word Parsing
Say "Enter your email address:"
Parse Upper Pull email .
Say "Enter your name:"
Parse Pull name

nums = LineIn(num_file)
Parse Var nums num1 num2 num3 .

'QUERY DISK' md '(LIFO'
Parse Pull . . . stat avail .
If stat = 'R/W' & avail > need Then [...]

Parse Source opsys how sfn sft sfm cmd cif
Say "This is" sfn sft "on the" sfm"-disk"
Say "of a" opsys "system. It was invoked"
Say "as a" how "with" cmd". The initial"
Say "command interface was" cif"."

Template Patterns
Patterns may be a

– String: ',' '0D0A'x " " 'POS='

– Numeric
● Absolute: =12 l3 =9999999

● Relative: +12 +0 -42

– Variable containing a pattern
● String: (symbol)
● Absolute: =(symbol)
● Relative: +(symbol) -(symbol)

Pattern Parsing
Say "Enter your email address:"
Parse Upper Pull user '@' domain '.' tld
Say "Enter your name (Last, First):"
Parse Pull lname', 'fname

Parse Value Date('E') With dd '/' mm '/' yy
c = ':'
Parse Value Time('N') With hr (c) mn (c) sc

nums = LineIn(num_file)
Parse Var nums =2 num1 =7 . ,
 =9 num2 =17 . ,
 =25 num3 =32 .
Parse Var nums =2 num1 +5 . ,
 =9 num2 +8 . ,
 =25 num3 +7 .
Parse Var nums =2 len1 +2 num1 +(len1) ,
 =9 len2 +2 num2 +(len2) ,
 =25 len3 +2 num3 +(len3)

Address interface [command]
● Controls to which interface command is sent
● If command omitted, sets interface for subsequent cmds
● Many interfaces available - two for CP/CMS commands:

 ADDRESS CMS [command] (default)
– Full CMS command line hand-holding:

 uppercasing, EXEC lookup, synonyming, abbreviating

 ADDRESS COMMAND [command]
– WYWIWYG - more robust, more explicit, no surprises

– Must specify command in uppercase, preface with 'CP' or
'EXEC' if not a CMS command/module, no synonyms,
no abbreviations

● Return code from command replaces value in variable RC

Address Command 'CP SPOOL' spl 'CLASS' cls
'QUERY DISK R'
If Rc \= 0 Then Call Cmd_Error

Retrieving Command Output

● Divert output from screen into stem array
● CMS - use the Stack interface
 'QUERY SEARCH (STACK'
 Do i = 1 To Queued()
 Parse Pull qsline.i
 End i
 qsline.0 = i - 1

● CP - use the Diagnose interface
 d8out = Diag(8,'CP QUERY NAMES')
 Do i = 1 While d8out \= ''
 Parse Var d8out qnline.i '15'x d8out
 End i
 qnline.0 = i - 1

Demos

● SAY EXEC - Q&D Rexx expression tester

● REXXTRY EXEC - SAY EXEC on steroids

● TIPPER EXEC - How to use Tracing

● CPCMD EXEC - How to issue commands to CP/CMS

● PI EXEC - NUMERIC DIGITS 10000 or more

Lab Exercises

● Lab Exercises are in problem LAB D
● Suggestions:

– SCOPY, ENUFF, WC, MAGIC8, DUMPMEM

– MAGIC8 needs to be completed

– DUMPMEM has three bugs
– Start with TRACE R setting

– Use REXXTRY & SAY EXECs to test snippets

– RENAME PROFILE SXEDIT D = XEDIT =

– Ask for help before you get frustrated

Finally...

● Lab Exercises are in problem LAB D
● Price List

Hints, Tips, Nudges $0.10

Good Answers .25

Complete Answers .50

More Than You Want To Know Free
● Questions?

